MECE 3350U
Control Systems

Lecture 9

Dominant Poles and Zeros

Midterm exam - Section 15
When: Monday, Oct 15, 11:10-12:30
What: Lectures 1 to 8
Where: Room split by first name:

A-I	J-Z
UL9	UA2120

Prepare your formula sheet (1 page, letter size, both sides)
Everything must be handwritten
Your formula sheet cannot exceed 1 page (letter size), both sides.
Please write your name/student ID on the formula sheet
\rightarrow Bring a photo ID or student card.
\rightarrow Exam problems are in line with those solved in class, tutorials, and assignments.
\rightarrow Office hours during the reading week: As usual.

Outline of Lecture 9

By the end of today's lecture you should be able to

- Understand the concept of dominant poles
- Recognize the influence zeros on the transient repose
- Simplify a transfer function to lower orders

Applications

The roll control autopilot of an aircraft has the following structure:

How can we calculate the k that yields an overshoot of less than 2% ?

Applications

A ventricular assist device is a mechanical pump used to support heart function and blood flow in people with weak or failing hearts.

The model of the heart and pump system results in a third order transfer function. How can we analyse the transient response of the system?

First order system

Consider the response of a first order system to an unit step input:

$$
X(s)=\frac{1}{s+a}\left(\frac{1}{s}\right)
$$

Using partial fraction expansion:

$$
X(s)=\frac{1 / a}{s}-\frac{1 / a}{s+a}
$$

The inverse transform yields

$$
x(t)=\frac{1}{a}\left(1-e^{-a t}\right)
$$

The transfer function has one pole located at $s=-a$.
\rightarrow How does the magnitude of $s=-a$ influence the transient response?

The effect of an additional pole
Let us now examine the step response of

$$
X(s)=\frac{p}{(s+1)(s+p)}\left(\frac{1}{s}\right)=\frac{1}{(s+1)\left(\frac{1}{p} s+1\right)}\left(\frac{1}{s}\right) .
$$

Partial fraction expansion gives:

$$
y(t)=1-\frac{p}{p-1} e^{-t}+\frac{1}{p-1} e^{-p t}
$$

Conclusion: If $p \gg 1$, the term $1 /(p-1) e^{-p t}$ is negligibly small as $t \rightarrow \infty$.

The effect of an additional pole

If the magnitude of the real part of a pole is at least 5 to 10 times that of a dominant pole, then the pole may be regarded as insignificant.

Second order systems with an additional pole
Consider the 3rd order function

$$
T(s)=\frac{1}{\left(s^{2}+2 \zeta \omega_{n}+1\right)(\gamma s+1)} .
$$

Real part of the poles are: $-1 / \gamma$ and $-\zeta \omega_{n}$. Thus, if

$$
\begin{equation*}
\left|\frac{1}{\gamma}\right| \geq 10\left|\zeta \omega_{n}\right| \tag{1}
\end{equation*}
$$

The response can be approximated by

$$
T_{a}(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+1}
$$

Take $\omega_{n}=1$, and $\zeta=0.45$: gives two poles at $s=-0.45 \pm 0.89$ i.
Example 1: $\gamma=1.00 \rightarrow$ Adds a pole to $s=-1$
Example 2: $\gamma=0.22 \rightarrow$ Adds a pole to $s=-4.5$.
Example 3: $\gamma=0.10 \rightarrow$ Adds a pole to $s=-10$.

Second order systems with an additional pole

Original 3rd order function:

$$
T(s)=\frac{1}{\left(s^{2}+2 \zeta \omega_{n} s+1\right)(\gamma s+1)}
$$

2nd order approximation:

$$
T_{a}(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+1}
$$

Additional zeros

Consider the transfer function with an additional zero $s=-z$:

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{\frac{\omega_{n}^{2}}{z}(s+z)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{2}
\end{equation*}
$$

If $z \gg \zeta \omega_{n}$, the zero will have minimal effect on the step response.
The unit step response of the above equation is: $\Rightarrow \mathscr{L}^{-1}=x(t)$

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}+\frac{\frac{\omega_{n}^{2}}{z}(s)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{3}
\end{equation*}
$$

If $x(t)$ is the inverse of the first term, than the time response is

$$
\begin{equation*}
y(t)=x(t)+\frac{1}{z}\left(\frac{d}{d t} x(t)\right) \tag{4}
\end{equation*}
$$

Conclusion: The additional zero speeds us transients, making rises and falls sharper.

Additional zeros

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{\frac{\omega_{n}^{2}}{z}(s+z)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{5}
\end{equation*}
$$

Consider: $\omega_{n}=1, \zeta=0.45, z=0.7,1,10$

Simplification to a lower order
A more precise approach: Match the frequency response.

Consider the high order system:

$$
\begin{equation*}
G_{H}(s)=K \frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\ldots+a_{1} s+1}{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+1} \tag{6}
\end{equation*}
$$

with $m \geq n$, which is to be mapped to a lower order system

$$
\begin{equation*}
G_{L}(s)=K \frac{c_{p} s^{p}+c_{p-1} s^{p-1}+\ldots+c_{1} s+1}{d_{g} s^{g}+d_{g-1} s^{g-1}+\ldots+d_{1} s+1} \tag{7}
\end{equation*}
$$

such that $p \leq g \leq n$.
The c and d coefficients of the approximate solution G_{L} are obtained via

$$
\begin{align*}
& M^{k}=\frac{d^{k}}{d s^{k}} M(s) \tag{8}\\
& \Delta^{k}=\frac{d^{k}}{d s^{k}} \Delta(s) \tag{9}
\end{align*}
$$

Simplification

for information only.

Let us define

$$
\begin{align*}
& M_{2 q}=\sum_{k=0}^{2 q} \frac{(-1)^{k+q} M^{k}(0) M^{2 q-k}(0)}{k!(2 q-k)!} \tag{10}\\
& \Delta_{2 q}=\sum_{k=0}^{2 q} \frac{(-1)^{k+q} \Delta^{k}(0) \Delta^{2 q-k}(0)}{k!(2 q-k)!} \tag{11}
\end{align*}
$$

So that the c and d coefficient are obtained by equating

$$
\begin{equation*}
M_{2 q}=\Delta_{2 q} \tag{12}
\end{equation*}
$$

for $q=1,2 \ldots$ and up to the number required to solve for the unknowns.

Location of poles

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

The poles are

$$
\begin{aligned}
& s=\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}} \\
& s=-\sigma \pm j \omega_{d}
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$, and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
\rightarrow Poles are located at a radius ω_{n}

Exercise 40

A closed-loop control system has a transfer function $T(s)$ as follows

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{2500}{(s+50)\left(s^{2}+10 s+50\right)} .
$$

Plot the time response to an unit step input when:
\rightarrow (a) The actual $T(s)$ is used (use Matlab)
\rightarrow (b) Using the dominant complex poles
\rightarrow (c) Compare the results

Exercise 40 -continued
(a) The actual function is

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{2500}{(s+50)\left(s^{2}+10 s+50\right)}
$$

(b) The approximate transfer function is

$$
s^{\prime}=-5 \pm 5_{J}
$$

$50 \gg|-5|$
\rightarrow can be neglected
\Rightarrow Mayanturle of $T^{\prime}(s)$ and $T(s)$ must be the same.

Exercise 41

A closed-loop control system transfer function as two dominant complete conjugate poles. Sketch the region in the left-hand s-plane where the complex poles should be located to meet the given specifications:
\rightarrow (a) $0.6 \leq \zeta \leq 0.8, \quad \omega_{n} \leq 10$
\rightarrow (b) $0.5 \leq \zeta \leq 0.707, \quad \omega_{n} \geq 10$
\rightarrow (c) $\zeta \geq 0.5, \quad 5 \leq \omega_{n} \leq 10$
\rightarrow (d) $\zeta \leq 0.707, \quad 5 \leq \omega_{n} \leq 10$
\rightarrow (e) $\zeta \geq 0.6, \quad \omega_{n} \leq 6$

Exercise 41 - continued

$$
\begin{aligned}
& \rightarrow \text { (a) } 0.6 \leq \zeta \leq 0.8, \quad \omega_{n} \leq 10 \\
& \theta_{1}=\sin ^{-1}(0.6) \\
& \theta_{1}=36^{\circ} \\
& \theta_{2}=\sin ^{-1}(0.8) \\
& \theta_{2}
\end{aligned}
$$

Exercise 41 - continued
$\rightarrow(b) 0.5 \leq$
$=\sin ^{-1}(0.5)$

$$
\theta_{1}=3 \theta^{\circ}
$$

$$
\theta_{2}=\sin ^{-1}(0.707)
$$

$$
\theta_{2}=45^{\circ}
$$

Exercise 41 - continued
\rightarrow (c) $\zeta \geq 0.5$,

Exercise 41 - continued

$$
\begin{aligned}
& \rightarrow \mathbf{(d)} \zeta \leq 0.707, \quad 5 \leq \omega_{n} \leq 10 \\
\theta & =\sin ^{-1}(0.7 \theta 7) \\
\theta & =45^{\circ}
\end{aligned}
$$

Exercise 41-continued

\rightarrow (e) $\zeta \geq 0.6, \quad \omega_{n} \leq 6$
homework

Exercise 42

A closed-loop transfer function is

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{108(s+3)}{(s+9)\left(s^{2}+8 s+36\right)}
$$

\rightarrow (a) Determine the steady state error for a unit step input.
\rightarrow (b) Assume that the complex poles dominate and determine the percent overshoot an setting time.
\rightarrow (c) Plot the actual system response and compare it with (b) \rightarrow Matlab code posted on BB

Exercise 42 - continued
(a) Steady-state error for $r(t)=1$.

$$
\begin{aligned}
& \quad T(s)=\frac{Y(s)}{R(s)}=\frac{108(s+3)}{(s+9)\left(s^{2}+8 s+36\right)} \cdots \frac{1}{s} \\
& e_{S S}=1-\lim _{s \rightarrow 0} s\left(\frac{108(s+3)}{(s+9)\left(\delta^{2}+8 s+36\right)}-\frac{1}{s}\right) \\
& e_{s s}=1-\frac{108 \times 3}{g \times 36} \\
& e_{s s}=0 \quad(y+y)
\end{aligned}
$$

Exercise 42 - continued
(b) Overshoot and settling time considering the dominant poles.

$$
\begin{aligned}
& T^{\prime}(s)=\frac{12(s+3)}{\delta^{2}+8 s+36} \\
& \omega_{n}=\sqrt{36}=6 \mathrm{rad} / \mathrm{s} \\
& 25 \mathrm{wn}_{n}=8 \\
& \square \zeta=0.67
\end{aligned}
$$

$$
\begin{aligned}
& \text { POO. }=100 e^{\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}} \\
& \text { POO. }=6 \%
\end{aligned}
$$

Exercise 42 - continued

(c) Overshoot and settling time considering the dominant poles.

$$
\begin{aligned}
T(s) & =\frac{Y(s)}{R(s)}=\frac{108(s+3)}{(s+9)\left(s^{2}+8 s+36\right)} \\
T_{s}=\frac{4}{\rho W n} & =\frac{4}{6 \times 0.67} \\
& T_{s}=1 \mathrm{sec}
\end{aligned}
$$

Exercise 42 - continued

$$
\mathrm{T}=\operatorname{tf}([108 \text { 324],[1 } 17108 \text { 324]); }
$$ step(T); stepinfo(T)

$\mathrm{H}=\operatorname{tf}\left([108 / 9324 / 9],\left[\begin{array}{ll}1 & 36\end{array}\right]\right)$;
step(H); $\operatorname{stepinfo(H)~}$
Matlab pastad on Blak loword.

Exercise 43

Consider the following closed loop system

Where τ can take the values $\tau=0,0.05,0.1$ or 0.5 . For $r(t)=1$:
\rightarrow (a) Record the percent overshoot, rise time, and settling time as τ varies.
\rightarrow (b) Describe the effects of varying τ.
\rightarrow (c) Compare the location of the zero with that of the closed-loop poles.

Exercise 43 - continued

The closed loop transfer function

See next slide for solution

Exercise 43 - continued

$$
T(s)=\frac{5440(\tau s+1)}{s^{3}+28 s^{2}+(432+5440 \tau) s+5440}
$$

Matlab commands:
$H=\operatorname{tf}([5440 * t 5400],[128432+5440 * t 5440])$;
infostep(H)
damp(H)

τ	T_{r}	T_{s}	P.O.	zero	pole
0	0.16	0.89	37%	N.A.	$-20,-4 \pm 16 \mathrm{~J}$
0.05	0.14	0.39	4.5%	110.05	$-10.4,-8.77 \pm 21 \mathrm{~J}$
0.1	0.10	0.49	0%	$1 / 0.1$	$-6.5,-10.7 \pm 26 \mathrm{~J}$
0.5	0.04	1.05	29.2%	$1 / 0.5$	$-1.75,-13.12 \pm 54 \mathrm{~J}$

Exercise 43 - continued

$\mathrm{t}=0$;
$\mathrm{H} 1=\operatorname{tf}([5440 * \mathrm{t} 5400],[128432+5440 * \mathrm{t} 5440])$;
step(H 1);

Exercise 44

The roll control of an aircraft is shown. The goal is to select a suitable K so that the response to a step command $r(t)=A$ will provide a fast response with an overshoot of less than 20%.

Steps for designing the controller:
\rightarrow (a) Determine the closed-loop transfer function
\rightarrow (b) Determine the poles for $K=0.7,3$, and 6 ;
\rightarrow (c) Using the concept of dominant poles find the expected overshoot
\rightarrow (d) Plot the actual response with Matlab and compare it with (c)

Exercise 44-continued
(a) The closed-loop transfer function

$$
\begin{aligned}
& y(s)=\frac{12 K}{s(s+3)(s+7)+12 k} \cdot R(s) \\
& y(s)=\frac{12 K}{s^{2}+10 s^{2}+21 s+12 K} R(s)
\end{aligned}
$$

Exercise 44-continued
(b) Finding the poles

$$
\begin{equation*}
T(s)=\frac{12 k}{s(s+3)(s+7)+12 k}=\frac{12 k}{s^{3}+10 s^{2}+21 s+12 k} \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& s^{3}+\operatorname{los}^{2}+21 s+12 k=0 \\
& K=0.7 \quad\left\{\begin{array}{l}
s_{1}=-7.27 \\
s_{2}=-2.21 \\
s_{3}=-0.52
\end{array}\right. \\
& K=3\left\{\begin{array}{l}
s_{1}=-7.91 \\
s_{23}=-1.04 \pm 1.86 \mathrm{~J}
\end{array}\right. \\
& K=4 \quad\left\{\begin{array}{l}
s_{1}=-8.453 \\
s_{23}=-0.74 \pm 2.81 \mathrm{~J}
\end{array}\right.
\end{aligned}
$$

Exercise 44 - continued
(c) Overshoot considering the dominant poles $(\mathrm{k}=0.7,3$, and 6$)$.

$$
\begin{equation*}
T(s)=\frac{12 k}{s(s+3)(s+7)+12 k}=\frac{12 k}{s^{3}+10 s^{2}+21 s+12 k} \tag{14}
\end{equation*}
$$

$K=0.3 \rightarrow$ poles are real P.O $=0$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{1 . \theta^{4}}{1.8 \theta}\right)=29^{\circ} \\
& \zeta=\sin \left(29^{\circ}\right)=0.488 \\
& \text { POO. }=100 e^{\frac{-\pi \rho}{\sqrt{1-\sigma^{2}}}}=17 \%
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{0.74}{2.81}\right), \quad \rho=\sin \left(14^{\circ}\right)=0.25 \\
& \theta=14^{\circ}, \quad,-\pi \rho
\end{aligned}
$$

$$
\begin{aligned}
& \theta=2 q \\
& P \cdot 0=100 e^{\frac{-\pi \rho}{\sqrt{1-\rho^{2}}}}=43 \%
\end{aligned}
$$

$$
w_{x}=\sqrt{0.74^{2}+2.81^{2}}=2.9058
$$

rads

$$
T_{s}=\frac{4}{w_{n} \zeta}=3 \cdot 4 s
$$

Exercise 44-continued

(d) Step-unit response using Matlab

Exercise 44-continued

(c) Overshoot considering the dominant poles ($k=0.7,3$, and 6).

$$
\begin{equation*}
T(s)=\frac{12 k}{s(s+3)(s+7)+12 k}=\frac{12 k}{s^{3}+10 s^{2}+21 s+12 k} \tag{15}
\end{equation*}
$$

Sa praviaes sletr.

Next class...

- Stability

