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MECE 3350U
Control Systems

Lecture 9
Dominant Poles and Zeros
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Midterm exam - Section 15
When: Monday, Oct 15, 11:10-12:30

What: Lectures 1 to 8

Where: Room split by first name:

A-I J-Z
UL9 UA2120

Prepare your formula sheet (1 page, letter size, both sides)

Everything must be handwritten

Your formula sheet cannot exceed 1 page (letter size), both sides.

Please write your name/student ID on the formula sheet

→ Bring a photo ID or student card.

→ Exam problems are in line with those solved in class, tutorials, and
assignments.

→ Office hours during the reading week: As usual.
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Outline of Lecture 9

By the end of today’s lecture you should be able to

• Understand the concept of dominant poles

• Recognize the influence zeros on the transient repose

• Simplify a transfer function to lower orders
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Applications

The roll control autopilot of an aircraft has the following structure:

How can we calculate the k that yields an overshoot of less than 2%?
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Applications

A ventricular assist device is a mechanical pump used to support heart function
and blood flow in people with weak or failing hearts.

The model of the heart and pump system results in a third order transfer
function. How can we analyse the transient response of the system?
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First order system

Consider the response of a first order system to an unit step input:

X(s) = 1
s + a

(1
s

)
Using partial fraction expansion:

X(s) = 1/a
s − 1/a

s + a
The inverse transform yields

x(t) = 1
a (1− e−at)

The transfer function has one pole located at s = −a.

→ How does the magnitude of s = −a influence the transient response?
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The effect of an additional pole
Let us now examine the step response of

X(s) = p
(s + 1)(s + p)

(1
s

)
= 1

(s + 1)( 1
p s + 1)

(1
s

)
.

Partial fraction expansion gives:

y(t) = 1− p
p − 1e−t + 1

p − 1e−pt

0 15time [sec]

0

1

y

0 15
-2

3

Conclusion: If p >> 1, the term 1/(p − 1)e−pt is negligibly small as t →∞.
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The effect of an additional pole

If the magnitude of the real part of a pole is at least 5 to 10 times that of a
dominant pole, then the pole may be regarded as insignificant.
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Second order systems with an additional pole

Consider the 3rd order function

T (s) = 1
(s2 + 2ζωn + 1)(γs + 1) .

Real part of the poles are: −1/γ and −ζωn. Thus, if∣∣∣∣ 1γ
∣∣∣∣ ≥ 10|ζωn| (1)

The response can be approximated by

Ta(s) = 1
s2 + 2ζωn + 1 .

Take ωn = 1, and ζ = 0.45: gives two poles at s = −0.45± 0.89i .

Example 1: γ = 1.00 → Adds a pole to s = −1

Example 2: γ = 0.22 → Adds a pole to s = −4.5.

Example 3: γ = 0.10 → Adds a pole to s = −10.
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Second order systems with an additional pole
Original 3rd order function:

T (s) = 1
(s2 + 2ζωns + 1)(γs + 1) .

2nd order approximation:

Ta(s) = 1
s2 + 2ζωns + 1 .
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0
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Additional zeros

Consider the transfer function with an additional zero s = −z:

Y (s)
R(s) =

ω2
n

z (s + z)
s2 + 2ζωns + ω2

n
(2)

If z >> ζωn, the zero will have minimal effect on the step response.

The unit step response of the above equation is:

Y (s)
R(s) = ω2

n

s2 + 2ζωns + ω2
n

+
ω2

n
z s

s2 + 2ζωns + ω2
n

(3)

If x(t) is the inverse of the first term, than the time response is

y(t) = x(t) + 1
z

( d
dt x(t)

)
(4)

Conclusion: The additional zero speeds us transients, making rises and falls
sharper.
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Additional zeros

Y (s)
R(s) =

ω2
n

z (s + z)
s2 + 2ζωns + ω2

n
(5)

Consider: ωn = 1, ζ = 0.45, z = 0.7, 1, 10
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Simplification to a lower order
A more precise approach: Match the frequency response.

Consider the high order system:

GH(s) = K amsm + am−1sm−1 + . . .+ a1s + 1
bnsn + bn−1sn−1 + . . .+ b1s + 1 (6)

with m ≥ n, which is to be mapped to a lower order system

GL(s) = K cpsp + cp−1sp−1 + . . .+ c1s + 1
dg sg + dg−1sg−1 + . . .+ d1s + 1 (7)

such that p ≤ g ≤ n.

The c and d coefficients of the approximate solution GL are obtained via

Mk = dk

dsk M(s) (8)

∆k = dk

dsk ∆(s) (9)
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Simplification

Let us define

M2q =
2q∑

k=0

(−1)k+qMk (0)M2q−k (0)
k!(2q − k)! (10)

∆2q =
2q∑

k=0

(−1)k+q∆k (0)∆2q−k (0)
k!(2q − k)! (11)

So that the c and d coefficient are obtained by equating

M2q = ∆2q (12)

for q = 1, 2... and up to the number required to solve for the unknowns.
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Location of poles

H(s) = ω2
n

s2 + 2ζωns + ω2
n

The poles are

s = ζωn ± jωn
√

1− ζ2

s = −σ ± jωd

where σ = ζωn, and ωd = ωn
√

1− ζ2

→ Poles are located at a radius ωn

→ The angle to the imaginary axis is θ = sin−1 ζ
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Exercise 40

A closed-loop control system has a transfer function T (s) as follows

T (s) = Y (s)
R(s) = 2500

(s + 50)(s2 + 10s + 50) .

Plot the time response to an unit step input when:

→ (a) The actual T (s) is used (use Matlab)

→ (b) Using the dominant complex poles

→ (c) Compare the results
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Exercise 40 - continued
(a) The actual function is

T (s) = Y (s)
R(s) = 2500

(s + 50)(s2 + 10s + 50) .

(b) The approximate transfer function is
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Exercise 41

A closed-loop control system transfer function as two dominant complete
conjugate poles. Sketch the region in the left-hand s-plane where the complex
poles should be located to meet the given specifications:

→ (a) 0.6 ≤ ζ ≤ 0.8, ωn ≤ 10

→ (b) 0.5 ≤ ζ ≤ 0.707, ωn ≥ 10

→ (c) ζ ≥ 0.5, 5 ≤ ωn ≤ 10

→ (d) ζ ≤ 0.707, 5 ≤ ωn ≤ 10

→ (e) ζ ≥ 0.6, ωn ≤ 6
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Exercise 41 - continued

→ (a) 0.6 ≤ ζ ≤ 0.8, ωn ≤ 10
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Exercise 41 - continued

→ (b) 0.5 ≤ ζ ≤ 0.707, ωn ≥ 10
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Exercise 41 - continued

→ (c) ζ ≥ 0.5, 5 ≤ ωn ≤ 10
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Exercise 41 - continued

→ (d) ζ ≤ 0.707, 5 ≤ ωn ≤ 10
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Exercise 41 - continued

→ (e) ζ ≥ 0.6, ωn ≤ 6
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Exercise 42

A closed-loop transfer function is

T (s) = Y (s)
R(s) = 108(s + 3)

(s + 9)(s2 + 8s + 36) .

→ (a) Determine the steady state error for a unit step input.

→ (b) Assume that the complex poles dominate and determine the percent
overshoot an setting time.

→ (c) Plot the actual system response and compare it with (b)
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Exercise 42 - continued

(a) Steady-state error for r(t) = 1.

T (s) = Y (s)
R(s) = 108(s + 3)

(s + 9)(s2 + 8s + 36) .
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Exercise 42 - continued

(b) Overshoot and settling time considering the dominant poles.

T (s) = Y (s)
R(s) = 108(s + 3)

(s + 9)(s2 + 8s + 36) .
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Exercise 42 - continued

(c) Overshoot and settling time considering the dominant poles.

T (s) = Y (s)
R(s) = 108(s + 3)

(s + 9)(s2 + 8s + 36) .
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Exercise 42 - continued
T = tf([108 324],[1 17 108 324]);
step(T); stepinfo(T)

H = tf([108/9 324/9],[1 8 36]);
step(H); stepinfo(H)
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Exercise 43

Consider the following closed loop system

Where τ can take the values τ = 0, 0.05, 0.1 or 0.5. For r(t) = 1:

→ (a) Record the percent overshoot, rise time, and settling time as τ varies.

→ (b) Describe the effects of varying τ .

→ (c) Compare the location of the zero with that of the closed-loop poles.
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Exercise 43 - continued
The closed loop transfer function
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Exercise 43 - continued

T (s) = 5440(τs + 1)
s3 + 28s2 + (432 + 5440τ)s + 5440

Matlab commands:

H = tf([5440*t 5400],[1 28 432+5440*t 5440]);
infostep(H)
damp(H)

τ Tr Ts P.O. zero pole

0

0.05

0.1

0.5
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Exercise 43 - continued
t = 0;
H1 = tf([5440*t 5400],[1 28 432+5440*t 5440]);
step(H1);
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Exercise 44

The roll control of an aircraft is shown. The goal is to select a suitable K so
that the response to a step command r(t) = A will provide a fast response with
an overshoot of less than 20%.

Steps for designing the controller:

→ (a) Determine the closed-loop transfer function

→ (b) Determine the poles for K = 0.7, 3, and 6;

→ (c) Using the concept of dominant poles find the expected overshoot

→ (d) Plot the actual response with Matlab and compare it with (c)
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Exercise 44 - continued
(a) The closed-loop transfer function
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Exercise 44 - continued

(b) Finding the poles

T (s) = 12k
s(s + 3)(s + 7) + 12k = 12k

s3 + 10s2 + 21s + 12k (13)
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Exercise 44 - continued

(c) Overshoot considering the dominant poles (k =0.7, 3, and 6).

T (s) = 12k
s(s + 3)(s + 7) + 12k = 12k

s3 + 10s2 + 21s + 12k (14)
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Exercise 44 - continued

(d) Step-unit response using Matlab
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Exercise 44 - continued

(c) Overshoot considering the dominant poles (k =0.7, 3, and 6).

T (s) = 12k
s(s + 3)(s + 7) + 12k = 12k

s3 + 10s2 + 21s + 12k (15)
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Next class...

• Stability
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