MECE 3350U
 Control Systems

Lecture 4
 Transfer Functions

Outline of Lecture 4

By the end of today's lecture you should be able to

- Understand the concept of transfer functions
- Find the transfer function of a given system
- Find the temporal response of a system for a given input

Applications

If the spring is stretched to a point $x(t)=5 \mathrm{~mm}$, held, then released at time $t=0$, how does the position of m_{1} evolve in time?

Applications

What torque must be applied to each of the robot joints so that end-effector moves along a given trajectory with a given speed?

Input/output relation
Transfer function: A relation between the input and output of a linear system
Example: Input: force $f(t)$, output: displacement $x(t)$

Taking the Laplace transform:

$$
m s^{2} x(s)+b s x(s)+k x(s)=F(s)
$$

The transfer function is $\quad X(s)\left[m s^{2}+b s+k\right]=F(s)$

$$
\begin{equation*}
H(s)=\frac{X(s)}{F(s)}=\frac{1}{m s^{2}+b s+K} \tag{1}
\end{equation*}
$$

Input/output relation
Example: Input: force $f(t)$, output: velocity $v(t)$

The dynamic model is

$$
\begin{equation*}
m \frac{d v}{d t}=f(t)-k \int v d t-b v \tag{2}
\end{equation*}
$$

Laplace transform of (2) is

$$
m s v(s)+b v(s)+k \cdot \frac{1}{s} v(s)=F(s)
$$

The transfer function is

$$
\begin{equation*}
H(s)=\frac{V(s)}{F(s)}=\frac{(s) \text { derivative }}{m s^{2}+b s+k} \tag{3}
\end{equation*}
$$

Input/output relation
Input: Voltage $v(t)$, output: Current $i(t)$

$$
\begin{equation*}
v(t)=R i(t)+L \frac{d i(t)}{d t} \tag{4}
\end{equation*}
$$

Taking the Laplace transform of (4):

$$
\begin{aligned}
& V(s)=R I(s)+L s I(s) \\
& V(s)=I(s)[R+L s]
\end{aligned}
$$

The transfer function is

$$
H(s)=\frac{I(s)}{V(s)}=\frac{1}{L s+R}
$$

Input/output relation
Input: Voltage $v(t)$, output: $v_{L}(t)$

$$
\begin{equation*}
v(t)=R i(t)+L \frac{d i(t)}{d t}, \quad v_{L}=L \frac{d i(t)}{d t} \tag{5}
\end{equation*}
$$

Taking the Laplace transform of (5):

$$
V(s)=[R+L s] I(s)
$$

The transfer function is

$$
V_{L}(s)=L s I(s)
$$

$$
\int^{s} \int^{\perp(s)}, \cdots I(s)=\frac{V_{2}(s)}{L s}
$$

$$
, \eta \frac{I(s)}{V(s)}=\frac{1}{L s+R}, \quad \frac{V_{L}(s)}{V(s)}=, \frac{1 L L s}{L s+\bar{R}}
$$

Input/output relation

The equation of motion of the simple pendulum is

$$
\begin{equation*}
m \frac{d^{2} \theta(t)}{d t^{2}}+m \frac{g}{\ell} \underbrace{\sin \theta}_{\theta}=T(t) \tag{6}
\end{equation*}
$$

For small angles, $\sin \theta \approx \theta$, in the frequency domain:

$$
\begin{gather*}
m s^{2} \theta(s)+\frac{m g}{l} \theta(s)=T(s) \\
\frac{\theta(s)}{T(s)}=\frac{1}{m s^{2}+\frac{m g}{l}} \tag{7}
\end{gather*}
$$

Transfer function poles and zeros

Transfer function: A rational function in the complex variable $s=\sigma+j \omega$:

$$
\begin{equation*}
H(s)=\frac{N(s)}{D(s)}=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}} \tag{8}
\end{equation*}
$$

The zeros z_{i} are the roots of

$$
N(s)=0
$$

Thus:

$$
\begin{equation*}
\lim _{s \rightarrow z_{i}} N(s)=0 \tag{9}
\end{equation*}
$$

The poles p_{i} are the roots of

$$
D(s)=0
$$

Thus:

$$
\begin{equation*}
\lim _{s \rightarrow p_{i}} H(s)=\infty \tag{10}
\end{equation*}
$$

Poles and zeros

Consider the following function:

$$
F(s)=\frac{s(s+3)}{s^{2}+2 s+5}
$$

\rightarrow Poles: $-1+2 j,-1-2 j$
\rightarrow Zeros: $0,-3$

First order transfer functions
Order: The number of the highest derivative in the denominator (power of s)
Standard form of a first order system:

$$
G(s)=k \frac{1}{\tau s+1}
$$

Characteristic equation: The denominator of the transfer function

$$
H(s)=\frac{I(s)}{V(s)}=\frac{1}{L s+R}=\frac{1}{R} \frac{1}{\frac{L}{R}+1}
$$

Time constant: Characterizes the response to a step input of a first-order system.

$$
\begin{equation*}
\tau=\frac{L}{R} \tag{11}
\end{equation*}
$$

\rightarrow The denominator must be in the form of $\tau s+\mathbf{1}$

Second order transfer functions

Standard form

$$
\begin{equation*}
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{12}
\end{equation*}
$$

Where: ω_{n} is the natural frequency, ζ is the damping ratio.
We will come back to these definitions in the next lecture.

$$
\begin{array}{ll}
H(s)=\frac{X(s)}{F(s)}=\frac{1}{m s^{2}+b s+k}=\frac{1}{m} \frac{1}{\left(\delta^{2}+\frac{b}{m} s+\frac{K}{m}\right)} \Rightarrow \frac{1}{m} \cdot \frac{m}{k} \frac{\mathrm{k} / \mathrm{m}}{\delta^{2}+\frac{b}{m} s+\frac{k}{m}} \\
\Rightarrow \zeta=\frac{b}{2 \sqrt{m k}}: \text { Dimensionless damping ratio } \\
\Rightarrow \omega_{n}=\sqrt{\frac{k}{m}}: \text { Natural frequency }(\mathrm{rad} / \mathrm{s}) & \frac{1}{k} \frac{\mathrm{k} / \mathrm{m}}{\delta^{2}+b / m} s+\frac{k}{m}
\end{array}
$$

Temporal response

Step 1: Define the input signal in Laplace domain

Temporal response

Step 1: Define the input signal in Laplace domain

input signal time domain frequency domain
polynomial $r(t)=a t^{n} \quad R(s)=a \frac{n!}{s^{n+1}}$
sine

$$
r(t)=\sin (a t) \quad R(s)=\frac{a}{s^{2}+a^{2}}
$$

cosine

$$
r(t)=\cos (a t) \quad R(t)=\frac{s}{s^{2}+a^{2}}
$$

a is a constant

Temporal response

Step 2: Replace the input signal in the transfer function

$$
\begin{equation*}
H(s)=\frac{X(s)}{F(s)}=\frac{1}{m s^{2}+b s+k} \tag{13}
\end{equation*}
$$

For a impulse input $f(t)=\delta(t), F(s)=1$ and the temporal response is

$$
\begin{equation*}
X(s)=\frac{1}{m s^{2}+b s+k} \times 1 \tag{14}
\end{equation*}
$$

For a step-type input $f(t)=1 \mathrm{~N}, F(s)=1 / s$ and the temporal response is

$$
\begin{equation*}
X(s)=\frac{1}{m s^{2}+b s+k}\left(\frac{1}{s}\right) \tag{15}
\end{equation*}
$$

For a sinusoidal input $f(t)=5 \sin (t) \mathrm{N}$:

$$
\begin{equation*}
X(s)=\frac{1}{m s^{2}+b s+k}\left(\frac{5}{s^{2}+1}\right), \text { not } 25 \tag{16}
\end{equation*}
$$

Temporal response

Step 3: Calculate the inverse transform of the resulting function
For a impulse input $f(t)=\delta(t), F(s)=1$ and the temporal response is

$$
\begin{equation*}
x(t)=\mathscr{L}^{-1}\left\{\frac{1}{m s^{2}+b s+k}\right\} \tag{17}
\end{equation*}
$$

For a step-type input $f(t)=1 \mathrm{~N}, F(s)=1 / \mathrm{s}$ and the temporal response is

$$
\begin{equation*}
x(t)=\mathscr{L}^{-1}\left\{\frac{1}{m s^{2}+b s+k}\left(\frac{1}{s}\right)\right\} \tag{18}
\end{equation*}
$$

and so on.

Steady-state value

Final value theorem: Gives the steady-state value without computing the inverse transform.

If the function converges, i.e., the poles of $s X(s)$ have negative real parts, then:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s) \tag{19}
\end{equation*}
$$

For a step type input, the mass spring damper system settles at

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)=\lim _{s \rightarrow 0} s\left\{\frac{1}{m s^{2}+b s+k}\left(\frac{1}{\xi}\right)\right\}=\frac{1}{k} \tag{20}
\end{equation*}
$$

For a impulse input, the $R L$ system converges at

$$
\begin{equation*}
\lim _{t \rightarrow \infty} i(t)=\lim _{s \rightarrow 0} s l(s)=\lim _{s \rightarrow 0} s\left\{\frac{1}{L s+R}\right\}=0 \tag{21}
\end{equation*}
$$

Exercise 16

Find the transfer function $H(s)$ between the input voltage V and the output voltage $V_{\text {out }}$.

Procedure:

\rightarrow Find the differential equation for the current
\rightarrow Find the equation for the output voltage
\rightarrow Calculate the transfer function

Exercise 16 - continued

$$
\begin{align*}
& v(t)=i(t) R+\frac{1}{C} \int i(t) d t \\
& V(\delta)=\left[R+\frac{1}{C s}\right] I(s) \tag{1}\\
& v_{\text {out }}(t)=\frac{1}{C} \int i d t \rightarrow V_{\text {out }}(\delta)=\frac{1}{C s} I(s)
\end{align*}
$$

$$
\begin{align*}
& (2) \rightarrow I(s)=V_{\text {out }}(s) C . s . \tag{1}\\
& V(s)=\left[R+\frac{1}{C s}\right] V_{\text {out }}(s) C \cdot s \\
& V(s)=(R C s+1) V_{\text {out }}(s) \\
& \frac{V_{\text {out }}(s)}{V(s)}=\frac{1}{R C s+1}
\end{align*}
$$

final value.

$$
\begin{aligned}
& \text { far an inpubso } \rightarrow\left\{\begin{array}{l}
v(t)=\delta(t) \\
V(s)=1
\end{array}\right. \\
& v_{\text {out }}(t)=V_{\text {out }}(s) \times\left. s\right|_{s \rightarrow \infty} \\
& v_{t \rightarrow \infty}=\left(\frac{1}{R(s+1} \times 1\right) \times\left. S\right|_{S \rightarrow 0}=0
\end{aligned}
$$

Exercise 17

Find the transfer function $H(s)=\frac{V(s)}{R(s)}$ between the force $r(t)$ and the velocity of mass m_{1}.

Procedure:

\rightarrow Find the differential equation the velocity of each mass
\rightarrow Calculate the Laplace transform
\rightarrow Calculate the transfer function

Exercise 17 - continued
Mars 1

$$
\begin{aligned}
& r(t)-b_{2} v_{1}-b_{1}\left(v_{1}-v_{2}\right)=m \dot{v}_{1} \\
& R(s)-b_{2} V_{1}(s)-b_{1}\left(V_{1}(s)-V_{2}(s)\right)=m s V_{1}(s) \\
& {\left[m_{1} s+b_{1}+b_{2}\right] V_{2}(s)-b_{1} V_{2}(s)=R(s)}
\end{aligned}
$$

Mass 2

$$
\begin{align*}
& b_{1}\left(v_{1}-v_{2}\right)-b_{1} \int v_{2} d t=m_{2} \frac{d v_{2}}{d t} \\
& m_{2} s V_{2}(s) t b_{1}\left(V_{2}(s)-V_{1}(s)\right)+\frac{k}{s} V_{2}(s)=0 \\
& -b_{1} V_{1}(s)+\left(m_{2} s+b_{1}+\frac{k}{\delta}\right) V_{2}(s)=0 \tag{2}
\end{align*}
$$

Exercise 17 - continued
(14) $\left[m_{1} s+\left(b_{1}+b_{2}\right)\right] V_{1}(s)-b_{1} V_{2}(s)=R(s)$
(2) $-b_{1} V_{1}(s)+\left(m_{2} s+b_{1}+\frac{k}{s}\right) V_{2}(s)=0$

$$
\longrightarrow v_{2}(s)=\frac{b_{1}}{m_{2} s+b_{1}+\frac{k}{s}} v_{2}(s)
$$

(3) In (1) gives

$$
\begin{aligned}
& {\left[m_{1} s+\left(b_{1}+b_{2}\right)\right] v_{1}(s)-b_{1}\left(\frac{b_{1}}{m_{2} s+b_{1}+k / s}\right) v_{1}(s)=R(s)} \\
& \frac{V_{1}(s)}{R(s)}=\frac{m_{2} s^{2}+b_{1} s+k}{\left(m_{1} s+b_{1}+b_{2}\right)\left(m_{2} s^{2}+b_{1} s+k\right)-b_{1}^{2} s}
\end{aligned}
$$

Exercise 18

A high precision positioning slide is shown in the figure. The drive shaft friction is $b_{d}=0.65$, the drive shaft spring constant is $k=1.8, m_{c}=1$, and the slide friction is $b_{s}=0.9$.

Determine:

\rightarrow Find the transfer function $H(s)=X(s) / Y(s)$.
\rightarrow Calculate the natural frequency, damping ratio, the poles, and zeros of $H(s)$
\rightarrow Find the steady-state value for a step input
\rightarrow Plot the step response of using Matlab

Exercise 18 - continued

$$
\begin{aligned}
& m s^{2} X(s)+\left(b_{s}+b_{d}\right) s X(s)+K X(s)=b_{d} s Y(s)+K Y(s) \\
& X(s)\left[m s^{2}+\left(b_{s}+b_{d}\right) s+k\right]=Y(s)\left[b_{d} s+k\right] \\
& \frac{Y(s)}{x(s)}=\frac{b d s+K}{m s^{2}+\left(b s+b_{d}\right) s+k}
\end{aligned}
$$

Exercise 18 - continued

$$
\frac{y(s)}{x(s)}=\frac{b d s+k}{m s^{2}+(b s+b d) s+K}
$$

for a step input $x(s)=\frac{1}{s}$

$$
\begin{aligned}
& Y(s)=\frac{b d s+k}{m s^{2}+\left(b_{s}+b d\right) s+k} \times \frac{1}{s} \\
& \text { final value }\left.\Rightarrow s Y(s)\right|_{s \rightarrow 0} \\
& x(t)=\left.s Y(s)\right|_{s \rightarrow 0}=\left.\$ \cdot \frac{b d s+k}{m s^{2}+(b s+b d) s+k} \cdot \frac{1}{\delta}\right|_{s \rightarrow 0}=\frac{k}{k}=1_{l}
\end{aligned}
$$

Exercise 18 - continued - Using Matlab

damp(H)
\rightarrow Natural frequency and damping
step $(\mathrm{H}, 10) \quad \rightarrow$ Step response
pzplot(H) \rightarrow Location of zeros and poles

Exercise 19

Calculate the natural frequency and damping ratio of the following transfer function

$$
T(s)=\frac{1.05 \times 10^{7}}{2 s^{2}+1.6 \times 10^{3} s+1.05 \times 10^{7}}
$$

Determine:

\rightarrow Write the transfer function in standard form
\rightarrow Find the steady-state value for a step input
\rightarrow Calculate the natural frequency and damping ratio

Exercise 19-continued

$$
\begin{aligned}
& T(s)=\frac{1.05 \times 10^{7}}{2 s^{2}+1.6 \times 10^{3} s+1.05 \times 10^{7}} \\
& T(s)=\frac{0.525 \times 10^{7}}{s^{2}+0.8 .10^{3}+0.525 \times 10^{7}} \\
& \omega_{n}^{2}=0.525 \times 10^{7}, \omega_{n}=2291 \mathrm{rod} / \mathrm{s} \\
& 2 \xi \omega_{n}=0.8 .10^{3} \\
& \delta=\frac{0.8 .19^{3}}{2+2291} \rightarrow \xi=0.17
\end{aligned}
$$

Exercise 20

Find the transfer function $G(s)=\frac{I_{2}(s)}{V(s)}$ of the circuit shown. Then, calculate the step response of the circuit using Matlab. Take $R=10 \Omega, C=0.001 \mathrm{~F}$, $L=0.1 \mathrm{H}, V=5 \mathrm{~V}$.

Determine:

\rightarrow Find the transfer function $H(s)=I_{2}(s) / V(s)$.
\rightarrow Find the steady-state value for a step input
\rightarrow Plot the step response of using Matlab

Exercise 20 - continued

$$
\begin{align*}
& V(s)=I_{1}(s) R+L s\left(I_{1}(s)-I_{2}(s)\right) \tag{1}\\
& I_{1}(s)=\frac{V+I_{2} L}{R+s L} \\
& \text { replace }
\end{align*}
$$

$$
\begin{aligned}
& {\left[I_{2}(s)-I_{1}(s)\right] s L+I_{2}(s) R+\frac{1}{C S} I_{2}(s)=0} \\
& I_{2}(s)\left[s L+R+\frac{1}{C s}\right]-s L\left(\frac{V+I_{2}+L}{R+s L}\right)=0 \\
& R_{2}+\frac{1}{C s}+L s-\frac{L^{2} \delta^{2}}{R+s L}=\frac{L s}{R+s L} V(s) \cdot \frac{1}{I_{2}} \\
& \frac{I_{2}(s)}{V(s)}=\frac{L C s^{2}}{s^{2}(2 R C L)+s\left(L+R^{2} C\right)+R}
\end{aligned}
$$

Exercise 20 - continued - Using Matlab

Next class...

- Effect of pole locations

