MECE 3350U
Control Systems

Lecture 22

Final Examination Review and Practice Exercises

Final examination

- When: Dec 14, 15:30-18:30
- Where: Gym.
- Seating assignments: Section 15: A, C, D, F, Section 21: G, I, J, L
- What: Lectures 2 to 22 (evenly distributed)
- Prepare your formula sheet (1 page, letter size, both sides)
- Bring a photo ID or student card.
- Exam problems are in line with those solved in class, tutorials, and assignments.

Formula sheet

Prepare your own formula sheet

Everything must be handwritten

Your formula sheet cannot exceed 1 page (letter size), both sides.

Please write your name/student ID on the formula sheet

Gain and phase - review

For a generic transfer function $G(s)$

$$
G(s)=k \frac{\prod_{i=1}^{n}\left(s+z_{i}\right)}{\prod_{k=1}^{m}\left(s+p_{k}\right)}
$$

we can evaluate the phase at a frequency ω by letting $s=j \omega$.
The phase is

$$
\angle G(j \omega)=\angle|k|+\sum_{i=1}^{n} \angle\left(j \omega+z_{i}\right)-\sum_{k=1}^{m} \angle\left(j \omega+p_{k}\right)
$$

where $\angle(j \omega+a)=\tan ^{-1} \omega / a$

Bode plot building blocks

1 - Constant gain

\rightarrow Gain: $|k|$ or $20 \log (|k|)$
\rightarrow Phase: $\phi=0 \forall \omega$ if $k>0,-180^{\circ}$ otherwise

2 - Pole at the origin

Bode plot building blocks

3 - Zero at the origin

4 - Real pole: $G(s)=\frac{1}{\frac{s}{\omega_{0}}+1}, \omega_{0} \in \Re^{*}$

Bode plot building blocks

5 - Real zero: $G(s)=\frac{s}{\omega_{0}}+1, \omega_{0} \in \Re^{*}$

6 - Imaginary zeros or poles:

Open loop vs closed loop stability

$$
T(s)=C(s) G(s)
$$

\rightarrow Evaluate the location of the poles of $C(s) G(s)$
Closed-loop stability

$$
T(s)=\frac{C(s) G(s)}{1+C(s) G(s)}
$$

\rightarrow Evaluate the location of the zeros of $1+C(s) G(s)$

Example: If $C(s) G(s)=\frac{s+a}{s+b}$
\rightarrow Open-loop stable if $C(s) G(s)$ has real negative poles: i.e., $b>0$
\rightarrow Closed-loop stable if $1+C(s) G(s)$ has real negative zeros:

Cauchy's argument principle

A contour map of a complex function will encircle the origin $N=Z-P$ times, where Z is the number of zeros and P is the number of poles of the function inside the contour.

The Nyquist Stability Criterion

A open-loop transfer function $L(s)$ is closed-loop stable if and only if the number of counterclockwise encirclements of the $-1+0 j$ point is equal to the number of poles of $L(s)$ with positive real parts

$$
Z=N+P
$$

Nyquist plot
\rightarrow The contour at infinity maps to a single point
$\rightarrow \omega=0$ (starting point)
$\rightarrow \omega \rightarrow \infty$
\rightarrow Point where the plot crosses the real and imaginary axis

Gain and phase margins

The characteristic equation of a closed loop system with unit feedback is

$$
\begin{aligned}
& \qquad 1+C(s) G(s)=0 \\
& \text { If }|C(s) G(s)|=1 \text { and } \angle|C(s) G(s)|= \pm 180^{\circ} \text {, the characteristic equations is } \\
& \text { zero }
\end{aligned}
$$

Stability margin: How far the system if from $-1+0 j$ or $1 \angle 180^{\circ}$

Gain and phase margins

Phase and gain margin

Phase margin

Step 1 - Find the crossover frequency (0 dB). At the crossover frequency $\omega=\omega_{c}$, the magnitude is 1

Step 2 - Find the phase of $G(j \omega)$ at ω_{c} for ω_{c} found in Step 1, i.e. $\angle G\left(j \omega_{c}\right)$
Step 3 - The margin phase is $180-|\phi|$

Gain margin

Step 1 - Find the frequency ω_{f} where $\angle|G(j \omega)|=-180^{\circ}$. At ω_{f}, $\Im\left[G\left(j \omega_{f}\right)\right]=0$ (imaginary part is zero)

Step 2 - Find the gain of $G(j \omega)$ at $\omega=\omega_{c}$, i.e., $\left|G\left(j \omega_{f}\right)\right|=G$
Step 3 - Then gain margin in Decibels is $-20 \log (G)$

State space model - back to temporal domain
State of a system: The set of variables that provides the future state and output of the system for a given input.

State variables: $\mathbf{x}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right]$
Examples: Position, /elocity, voltage, current, etc.
The space state representation is:

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A x}(t)+\mathbf{B u}(\mathbf{t}) \\
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(\mathbf{t})
\end{aligned}
$$

Practice problems

Practice Exercises

Please refer to Lecture 15 for more examples pertaining to Lectures 1 to 14

Exercise 128

Calculate the magnitude and phase of

$$
G(s)=\frac{1}{s+10}
$$

by hand for $\omega=1,2,5,10,20,50$ and $100 \mathrm{rad} / \mathrm{s}$. Then, sketch the Bode plot of $\mathrm{G}(\mathrm{s})$ and compare the results. The Bode plot can be obtained in Matlab

[^0]Phase: -5.71, -11.3, -26.6, $-45,-63.4,-78.7,-84.3$

Exercise 129

Sketch the Bode plot for the following open-loop transfer function and estimate the stability margins. After completing the and sketches, verify your results using Matlab.

$$
L(s)=\frac{2000}{s(s+200)}
$$

Matlab script
bode $\left(\operatorname{tf}\left([2000],\left[\begin{array}{lll}1 & 200 & 0\end{array}\right]\right)\right.$

Exercise 130

Sketch the Bode plot for the following open-loop transfer function and estimate the stability margins. After completing the and sketches, verify your results using Matlab.

$$
L(s)=\frac{s+2}{s(s+1)(s+5)(s+10)}
$$

Matlab script:

$$
\begin{aligned}
& s=\operatorname{tf}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right],[1]\right) \\
& \operatorname{bode}\left((s+2) /\left(s^{*}(s+1)^{*}(s+5)^{*}(s+10)\right)\right)
\end{aligned}
$$

Exercise 131

Sketch the Bode plot for the following open-loop transfer function and estimate the stability margins. After completing the and sketches, verify your results using Matlab.

$$
L(s)=\frac{1}{s^{2}(s+10)}
$$

Matlab script:

$$
\begin{aligned}
& s=\operatorname{tf}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right],[1]\right) \\
& \text { bode }\left(1 /\left(s^{*} s^{*}(s+10)\right)\right)
\end{aligned}
$$

Exercise 132

Sketch the Bode plot for the following open-loop transfer function and estimate the stability margins. After completing the and sketches, verify your results using Matlab.

$$
L(s)=\frac{s+2}{s(s+10)\left(s^{2}+2 s+2\right)}
$$

Matlab script:
$s=\operatorname{tf}\left(\left[\begin{array}{ll}1 & 0\end{array}\right],[1]\right)$;
bode((s+2)/(s*(s+10)*(s*s+2*s+2)))

Exercise 133

Draw the Nyquist plot for the system shown. Using the Nyquist stability criterion, determine the range of k for which the system is stable.

Exercise 133 - continued

Answer

For positive k, note that the magnitude of the Nyquist plot as it crosses the negative real axis is 0.1 , hence $k<10$ for stability.

Exercise 134

The Nyquist plot for a control system resembles the one shown below. What is the phase margin(s)? ${ }^{2}$

[^1]
Exercise 135

Determine the range of k for which the following system is stable by making a Bode plot for $k=1$ and imagining the magnitude plot sliding up or down until instability results.

$$
G(s)=\frac{k(s+3)}{s+30}
$$

Verify your results using a very rough sketch of a root-locus plot. ${ }^{3}$

[^2]
Exercise 136

Determine the range of k for which the following system is stable by making a Bode plot for $k=1$ and imagining the magnitude plot sliding up or down until instability results.

$$
G(s)=\frac{k}{(s+10)(s+1)^{2}}
$$

Verify your results using a very rough sketch of a root-locus plot. ${ }^{4}$

[^3]
Exercise 137

The Bode plot of an unknown circuit has been obtained experimentally. Sketch the Nyquist plot of the system based on the Bode plot.

Exercise 137 - continued

Answer

Exercise 138

A feedback control system is shown. The closed-loop system is specified to have a phase margin of 40°. Determine $k .{ }^{5}$

[^4]
Exercise 139

A two thank system is controlled by a motor adjusting the input valve and ultimately varying the output flow rate. The system has the transfer function

Obtain a state variable model.

Exercise 139 - solution

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-20 & -29 & -10
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] p \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

Exercise 140

An automatic depth control system for a robot submarine is shown in the figure. The depth is measured by a pressure transducer. The gain of the stern place actuator is $k=1$ when the vertical velocity is $25 \mathrm{~m} / \mathrm{s}$. Determine a state variable representation of the system.

Exercise 140 - continued

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 / 3 & -5 / 3 & -5 / 3
\end{array}\right] x+\left[\begin{array}{c}
0 \\
0 \\
1 / 3
\end{array}\right] r \\
& y=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] x
\end{aligned}
$$

Exercise 141

A two mass system is shown. The rolling friction constant is b. Determine a state variable representation when the output variable.

Exercise 141 - solution

Exercise 142

A system has block diagram shown. Determine a state variable model.

Exercise 142 - solution

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-25 & -6
\end{array}\right] x+\left[\begin{array}{c}
0 \\
25
\end{array}\right] r \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

Research opportunities

Students interested in part/full time research in mechatronics with applications to biomedical robotics:
www.biomechatronics.ca

The end

Tank you for a great semester!

[^0]: ${ }^{1}$ Gain: $0.095,0.0981,0.0894,0.0707,0.0447,0.0196,0.0099$

[^1]: ${ }^{2}-20 \log (\alpha),+20 \log (\beta)$

[^2]: ${ }^{3}$ Stable $\forall k>0$

[^3]: ${ }^{4}$ Stable for $k<242$

[^4]: ${ }^{5} k=7.81$

