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MECE 3350U
Control Systems

Lecture 19
Nyquist Plot
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Outline of Lecture 19

By the end of today’s lecture you should be able to

• Draw the approximate Nyquist plot of a transfer function

• Relate the Nyquist plot to frequency response

• Determine the stability based on open look transfer function
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Applications

The frequency response of any system can be determined experimentally.

What does this information about the open-loop system tell us about the
stability of the closed-loop system?
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Review

An open loop transfer function L(s) = C(s)H(s)

is stable if all the poles of C(s)H(s) have negative real parts.

The closed loop system

T (s) = C(s)G(s)
1 + C(s)G(s)

is stable if the zeros of 1 + C(s)G(s) have negative real parts.
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Cauchy’s argument principle

The magnitude is

|G(jω)| = a1 × a2

a3 × a4

The phase is

φ = φ1 + φ2 − φ3 − φ4
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Cauchy’s argument principle

As s traverses Γ1, the net angle change is

As s traverses Γ2, the net angle change is

As s traverses Γ3, the net angle change is
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Cauchy’s argument principle
If the characteristic equation of 1 + C(s)G(s) has:

→ A number P of poles in the right-half plane.
→ A number N of zeros in the right-half plane.

For an contour that encircles the entire right-half plane:

The relation between P, Z , and the net number N of clockwise encirclements
of the origin is:

N = Z − P
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Nyquist plot

1 + C(s)G(s) = 0 (1)

If (1) has a zero or pole in the right-half s-plane, the contour of (1) encircles
the origin.

T (s) = C(s)G(s) (2)

If (2) has a zero or pole of in the right-half s-plane, the contour of (1) encircles
−1 + j0.
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The Nyquist Stability Criterion

An open-loop transfer function L(s) has Z unstable closed-loop roots given by

Z = N + P

→ N is the number of clockwise encirclements of −1

→ P is the number of poles in the right-half s-plane

Counterclockwise encirclements are negative.

Thus:

A open-loop transfer function L(s) is closed-loop stable if and only if the
number of counterclockwise encirclements of the −1 + 0j point is equal to the

number of poles of L(s) with positive real parts.
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Nyquist plot

How to create the Nyquist plot for a given function?

L(s) = s + 1
s2 + 3

Point by point mapping?
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Nyquist plot

The Nyquist contour can be divided into two segments

⇒ Segment 1 - The imaginary axis, i.e., s = jω
Thanks to symmetry, only the positive part needs to be evaluated

⇒ Segment 2 - The contour at infinity
Segment 2 maps to a single point!
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Segment 2 - Contour at infinity
Case 1 - More poles than zeros

If |s| → ∞ and m > n, then

|H(s)| = k
∏n

i=1(|s + zi |)∏m
k=1(|s + pk |)

→ 0

→ The magnitude is zero for all points lying on the contour at infinity

→ The phase is irrelevant

→ In the Nyquist plot the entire segment maps to zero.
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Segment 2 - Contour at infinity
Case 2 - Same number of poles and zeros

If |s| → ∞ and m = n, then

|H(s)| = k
∏n

i=1(|s + zi |)∏m
k=1(|s + pk |)

= β

The phase is

∠H(s) =
n∑

i=1

∠(s + zi )−
m∑

k=1

∠(s + pk ) ≈ 0

Thus
β ∈ <+
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Segment 1 - positive imaginary axis

For the imaginary segment, 4 points need to be analysed

1→ ω = 0 (starting point)

2→ ω →∞

3→ Point in the w-plane where the plot crosses the real axis

4→ Point in the w-plane where the plot crosses the imaginary axis
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Exercise 112

Determine the Nyquist plot for the open-loop transfer function

L(s) = 1
s2 + s + 1
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Exercise 112 - continued

L(s) = 1
s2 + s + 1 → L(jω) = 1

−ω2 + jω + 1

ω = 0 ω →∞

Real axis crossing

Imaginary axis crossing
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Exercise 112 - continued
Starting point: ω = 0 → w = 1∠0◦

Mid point: ω =∞ → w = 0∠− 180◦

Imaginary axis crossing point: w = ±1j

Real axis crossing point: w = 0
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Poles or zeros on the imaginary axis
A pole or zero anywhere on the imaginary axis will create an arc at infinity.

Example: H(s) = 1
s

As P tends to zero:

|H(jω)| → ∞ and ∠H(jω) = −∠s = 0− (−90) = 90◦ but it is undefined at 0

As P1 follows the contour around 0

|H(jω)| → ∞ and ∠H(jω) = +90◦, ∠H(jω) = 0◦, ∠H(jω) = −90◦
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Poles or zeros on the imaginary axis

Example: H(s) = 1
s
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Nyquist plot vs Bode plot
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Steps for analysis

1→ In the transfer function, set s = jω

2→ Evaluate the points ω = 0, and ω →∞ (including phase)

3→ Find the points where the plot crosses the imaginary and real axis

4→ Sketch the Nyquist plot and draw the reflection about the real axis

5→ Evaluate the number N of clockwise encirclements of −1. If encirclements
are in counterclockwise direction, N is negative.

6→ Determine the number P of unstable poles of the open-loop transfer
function

7→ Calculate the number Z of unstable roots Z = N + P.
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Exercise 113

Using the Nyquist stability criterion, evaluate the stability of a closed-loop
system whose loop transfer function is

H(s) = 1
s(s + a)
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Exercise 113 - continued

H(s) = 1
s(s + a)
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Exercise 113 - continued

H(s) = 1
s(s + a)
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Exercise 114

A closed-loop system has a loop transfer function

L(s) = k s + 2
s2 − 1 .

Determine the minimum gain k that stabilizes the closed-loop system.

Use the Nyquist stability criterion.
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Exercise 114 - continued

L(s) = k s + 2
s2 − 1 .
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Exercise 115
Sketch the Nyquist plot based on the Bode plots (k = 1) for the following
system, then compare your result with that obtained using the Matlab
command "nyquist". Using your plots, estimate the range of k for which the
system is stable, and quantitatively verify your result using a rough sketch of a
root-locus plot.

L(s) = k
(s + 10)(s + 2)2
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Exercise 115 - continued L(s) = k
(s + 10)(s + 2)2
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Exercise 115 - continued

L(s) = k
(s + 10)(s + 2)2
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Exercise 116
Sketch the Nyquist plot based on the Bode plots (k = 1) for the following
system, then compare your result with that obtained using the Matlab
command "nyquist". Using your plots, estimate the range of k for which the
system is stable, and quantitatively verify your result using a rough sketch of a
root-locus plot.

L(s) = k (s + 10)(s + 1)
(s + 100)(s + 2)3
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Exercise 116 - continued L(s) = k (s + 10)(s + 1)
(s + 100)(s + 3)2
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Exercise 116 - continued

L(s) = k (s + 10)(s + 1)
(s + 100)(s + 3)2
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Please complete the student feedback survey:

https://cci-survey.ca/uoit/ca/
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Next class...

• Stability margins
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