MECE 3350U
Control Systems

Lecture 19
 Nyquist Plots

Outline of Lecture 19

By the end of today's lecture you should be able to

- Draw the approximate Nyquist plot of a transfer function
- Relate the Nyquist plot to frequency response
- Determine the stability based on open look transfer function

Applications

The frequency response of any system can be determined experimentally.

What does this information about the open-loop system tell us about the stability of the closed-loop system?

Review

An open loop transfer function $L(s)=C(s) H(s)$

is stable if all the poles of $C(s) H(s)$ have negative real parts.
The closed loop system

$$
T(s)=\frac{C(s) G(s)}{1+C(s) G(s)}
$$

is stable if the zeros of $1+C(s) G(s)$ have negative real parts.

Cauchy's argument principle

The magnitude is

$$
|H(j \omega)|=\frac{a_{1} \times a_{2}}{a_{3} \times a_{4}}
$$

The phase is

$$
\phi=\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}
$$

Cauchy's argument principle

As s traverses Γ_{1}, the net angle change is $+360^{\circ}$
As s traverses Γ_{2}, the net angle change is $-360^{\circ} \quad$ (pole)
As s traverses Γ_{3}, the net angle change is 0

Cauchy's argument principle
If the characteristic equation of $1+C(s) G(s)$ has:
\rightarrow A number P of poles in the right-half plane.
\rightarrow A number N of zeros in the right-half plane.
For an contour that encircles the entire right-half plane:

The relation between P, Z, and the net number N of clockwise encirclements of the origin is:

$$
N=Z-P
$$

$$
Z=P+N
$$

Nyquist plot

$$
\begin{equation*}
1+C(s) G(s)=0 \quad \text { closed }-100 p \tag{1}
\end{equation*}
$$

If (1) has a zero or pole in the right-half s-plane, the contour of (1) encircles the origin.

$$
\begin{equation*}
T(s)=C(s) G(s) \text { open-loop } \tag{2}
\end{equation*}
$$

If (2) has a zero or pole in the right-half s-plane, the contour of (1) encircles $-1+j 0$.

The Nyquist Stability Criterion

An open-loop transfer function $L(s)$ has Z unstable closed-loop roots given by

$$
Z=N+P
$$

$\rightarrow \mathrm{N}$ is the number of clockwise encirclements of -1
$\rightarrow P$ is the number of poles in the right-half s-plane

Counterclockwise encirclements are negative.

Thus:
A open-loop transfer function $L(s)$ is closed-loop stable if and only if the number of counterclockwise encirclements of the $-1+0 j$ point is equal to the number of poles of $L(s)$ with positive real parts.

Nyquist plot

How to create the Nyquist plot for a given function?

$$
L(s)=\frac{s+1}{s^{2}+3}
$$

Point by point mapping?

Nyquist plot

The Nyquist contour can be divided into two segments

Thanks to symmetry, only the positive part needs to be evaluated
\Rightarrow Segment 2 - The contour at infinity
Segment 2 maps to a single point!

Segment 2 - Contour at infinity

Case 1 - More poles than zeros

If $|s| \rightarrow \infty$ and $m>n$, then

$$
|H(s)|=k \frac{\prod_{i=1}^{n}\left(\left|s+z_{i}\right|\right)}{\prod_{k=1}^{m}\left(\left|s+p_{k}\right|\right)} \rightarrow 0
$$

\rightarrow The magnitude is zero for all points lying on the contour at infinity
\rightarrow The phase is irrelevant
\rightarrow In the Nyquist plot the entire segment maps to zero.

Segment 2 - Contour at infinity

Case 2 - Same number of poles and zeros

If $|s| \rightarrow \infty$ and $m=n$, then

$$
|H(s)|=k \frac{\prod_{i=1}^{n}\left(\left|s+z_{i}\right|\right)}{\prod_{k=1}^{m}\left(\left|s+p_{k}\right|\right)}=\beta
$$

The phase is

$$
\angle H(s)=\sum_{i=1}^{n} \angle\left(s+z_{i}\right)-\sum_{k=1}^{m} \angle\left(s+p_{k}\right) \approx 0
$$

Thus

$$
\beta \in \Re^{+}
$$

Segment 1 - positive imaginary axis

For the imaginary segment, 4 points need to be analysed
$1 \rightarrow \omega=0$ (starting point)
$2 \rightarrow \omega \rightarrow \infty$
$3 \rightarrow$ Point in the w-plane where the plot crosses the real axis
$4 \rightarrow$ Point in the w-plane where the plot crosses the imaginary axis

Exercise 112
recall that $\left\{\begin{array}{l}S=j \omega \\ J=\sqrt{-1}\end{array}\right.$
Determine the Nyquist plot for the open-loop transfer function

$$
\begin{aligned}
& L(s)=\frac{1}{s^{2}+s+1} \rightarrow L(J w)=\frac{1}{(J w)^{2}+J w+1} \\
& L(J w)=\frac{1}{-\omega^{2}+J w+1} \cdot \frac{\left(-\omega^{2}+l\right)-J w}{\left(-\omega^{2}+1\right)-J w} \rightarrow L(J w)=\underbrace{\frac{-w^{2}+1}{\left(-w^{2}+l\right)^{2}+w^{2}}}_{\text {real part }}+\underbrace{\frac{-w}{\left(-w^{2}+1\right)^{2}+w^{2}}}_{\text {imeginery pert }}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& w=0 \\
& L(0)=1
\end{aligned}
$$

phese is $-\left(\varphi_{1}+\varphi_{2}\right)$

Imeginary exis crassing $R e=0 \rightarrow$ replace $w=1$

$$
\frac{-w^{2}+1}{\left(-\omega^{2}+()^{2}+w^{2}\right.}=0, w=1-L(J \omega)= \pm J
$$

Rad axis vrassing $I_{m}=0$ $\frac{-w}{\left(-w^{2}+()^{2}+w^{2}\right.}=0, w=0 \rightarrow$ abready calulated
(2) $\omega \rightarrow \infty$

$$
L(\infty)=0
$$

phese is $\underset{\text { pole }}{0} 0_{j}^{-}\left(90^{\circ}+90^{\circ}\right)=-180^{\circ}$

Exercise 112 - continued

$$
L(s)=\frac{1}{s^{2}+s+1} \rightarrow L(j \omega)=\frac{1}{-\omega^{2}+j \omega+1}
$$

$$
\omega=0 \quad \omega \rightarrow \infty
$$

Real axis crossing
See previous slide

Imaginary axis crossing

Exercise 112 - continued

(1) Starting point: $\omega=0 \rightarrow w=1 \angle 0^{\circ}$

(2) Mid point: $\omega=\infty \rightarrow w=0 \angle-180^{\circ}$
(3) Imaginary axis crossing point: $w= \pm 1 j$
(4) Real axis crossing point: $w=0$
same ar

Poles or zeros on the imaginary axis
A pole or zero anywhere on the imaginary axis will create an arc at infinity.
Example: $H(s)=\frac{1}{s}$

As P tends to zero:
$|H(j \omega)| \rightarrow \infty$ and $\angle H(j \omega)=-\angle s=0-(-90)=90^{\circ}$ but it is undefined at 0
As P_{1} follows the contour around 0

$$
|H(j \omega)| \rightarrow \infty \text { and } \angle H(j \omega)=+90^{\circ}, \angle H(j \omega)=0^{\circ}, \angle H(j \omega)=-90^{\circ}
$$

Poles or zeros on the imaginary axis

Example: $H(s)=\frac{1}{s}$

(1) $|H(\mathrm{Fu})|=\infty$

$\varphi=0$
(3) $|H(J \omega)|=0$
(2) $|H(\xi w)|=\infty$
$\varphi=-90$
$\varphi=-90$

Nyquist plot vs Bode plot

Steps for analysis
$1 \rightarrow$ In the transfer function, set $s=j \omega$
$2 \rightarrow$ Evaluate the points $\omega=0$, and $\omega \rightarrow \infty$ (including phase)
$3 \rightarrow$ Find the points where the plot crosses the imaginary and real axis
$4 \rightarrow$ Sketch the Nyquist plot and draw the reflection about the real axis
$5 \rightarrow$ Evaluate the number N of clockwise encirclements of -1 . If encirclements are in counterclockwise direction, N is negative.
$6 \rightarrow$ Determine the number P of unstable poles of the open-loop transfer function
$7 \rightarrow$ Calculate the number Z of unstable roots $Z=N+P$.

Exercise 113

Using the Nyquist stability criterion, evaluate the stability of a closed-loop system whose loop transfer function is

$$
H(s)=\frac{1}{s(s+a)}
$$

Exercise 113 - continued

$$
\begin{aligned}
& H(s)=\frac{1}{s(s+a)} \\
& H(J \omega)=\frac{1}{J \omega(J \omega+a)}=\frac{1}{-\omega^{2}+J \omega a} \frac{-\omega^{2}-J \omega a}{-\omega^{2}-j \omega a} \rightarrow H(J \omega)=\frac{-\omega^{2}}{\omega^{2}\left(\omega^{2}+a^{2}\right)}+J \frac{-\omega a}{\omega\left(\omega^{3}+\omega c^{2}\right)} \\
& H(J \omega)=\frac{-1}{\omega^{2}+a^{2}}+J \frac{(-a)}{\omega^{3}+\omega a^{2}} \\
& \text { if } \omega=0 \quad \text { if } \omega \rightarrow \infty \\
& H(J \omega)=-\frac{1}{a^{2}}+J(-\infty) \quad H(J \omega)=0 \\
& E q(1)
\end{aligned}
$$

Exercise 113 - continued

(1) $|H(J \omega)|=\infty$

$$
\varphi=0
$$

$$
H(s)=\frac{1}{s(s+a)}
$$

(2) $|H(J \omega)|=\infty \quad$ (sime
$\varphi=-9 \theta^{\circ} \quad$ as Eg)

(3) $|H(J \omega)|=0$

$$
\varphi=-180^{\circ}
$$

Exercise 114

A closed-loop system has a loop transfer function

$$
L(s)=k \frac{s+2}{s^{2}-1}
$$

Determine the minimum gain k that stabilizes the closed-loop system.
Use the Nyquist stability criterion.

Exercise 114 - continued

$$
\begin{aligned}
& w=0 \rightarrow-2 k \underline{\underline{\theta^{0}}} \\
& w \rightarrow \infty \rightarrow 0 \underline{-g \theta^{\circ}}
\end{aligned} \quad L(s)=k \frac{s+2}{s^{2}-1}=\frac{s+2}{(s+1)(s-1)}
$$

$$
\begin{aligned}
& L(f \omega)=\frac{K(J \omega+2)}{(J \omega)^{2}-1} \\
& L(J \omega)=\frac{2 K}{-1-w^{2}}+J \frac{(K w)}{-1-w^{2}}
\end{aligned}
$$

Re=0,w=m \rightarrow Ne crossing of Im. Im=0, $w=0$ ar $w=\infty$ (alreedy calculstade)

Exercise 115

Sketch the Nyquist plot based on the Bode plots $(k=1)$ for the following system, then compare your result with that obtained using the Matlab command "nyquist". Using your plots, estimate the range of k for which the system is stable, and quantitatively verify your result using a rough sketch of a root-locus plot.

$$
L(s)=\frac{k}{(s+10)(s+2)^{2}}
$$

Exercise 115-continued $L(s)=\frac{k}{(s+10)(s+2)^{2}}$

$$
\begin{aligned}
& P_{y} w \rightarrow \infty \\
& |\in(J \omega)| \rightarrow 0 \\
& \varphi=-270^{\circ}
\end{aligned}
$$

Exercise 115 - continued

$$
L(s)=\frac{k}{(s+10)(s+2)^{2}}
$$

Exercise 116

Sketch the Nyquist plot based on the Bode plots $(k=1)$ for the following system, then compare your result with that obtained using the Matlab command "nyquist". Using your plots, estimate the range of k for which the system is stable, and quantitatively verify your result using a rough sketch of a root-locus plot.

$$
L(s)=k \frac{(s+10)(s+1)}{(s+100)(s+2)^{3}}
$$

Exercise 116-continued $\quad L(s)=k \frac{(s+10)(s+1)}{(s+100)(s+3)^{2}}$

Exercise 116 - continued

$$
L(s)=k \frac{(s+10)(s+1)}{(s+100)(s+3)^{2}}
$$

Please complete the student feedback survey:
https://cci-survey.ca/uoit/ca/

Next class...

- Stability margins

