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MECE 3350U
Control Systems

Lecture 18
Nyquist Stability Criterion
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Outline of Lecture 18

By the end of today’s lecture you should be able to

• Extend the concept of gain and phase

• Understand the Nyquist stability criterion

• Determine the stability based on open loop transfer function
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Applications

Knowing the open-loop transfer function of the system below, how can we
evaluate its stability without computing the closed-loop transfer function?
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Gain and phase - review

Any system can be characterized by its frequency response to a sinusoidal
excitation.

The ratio B/A is called the gain of G(s) for given frequency.

The phase shift φ is the phase of G(s) for a given frequency.

Data can be obtained experimentally is G(s) is unknown.
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Gain and phase - review
For a generic transfer function G(s)

G(s) = k
∏n

i=1(s + zi )∏m
k=1(s + pk )

we can evaluate the gain at a frequency ω by letting s = jω.

The gain is

G(jω) = |k|
∏n

i=1 |jω + zi |∏m
k=1 |jω + pk |

where |jω ± a| =
√
ω2 + (±a)2
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Gain and phase - review
For a generic transfer function G(s)

G(s) = k
∏n

i=1(s + zi )∏m
k=1(s + pk )

we can evaluate the phase at a frequency ω by letting s = jω.

The phase is

∠G(jω) = ∠|k|+
n∑

i=1

∠(jω + zi )−
m∑

k=1

∠(jω + pk )

where ∠(jω + a) = tan−1 ω/a
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Open loop vs closed loop stability

Generally the process and controller transfer functions are known

The open loop transfer function is L(s) = C(s)H(s).

Closing the loop changes the transfer function to

T (s) = C(s)G(s)
1 + C(s)G(s) = L(s)

1 + L(s)
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Open loop vs closed loop stability
Open-loop stability

T (s) = C(s)G(s) (1)

→ Evaluate the location of the poles of C(s)G(s)

Closed-loop stability

T (s) = C(s)G(s)
1 + C(s)G(s)

→ Evaluate the location of the zeros of 1 + C(s)G(s)

Example: If C(s)G(s) = s+a
s+b

→ Open-loop stable if C(s)G(s) has real negative poles: i.e., b > 0

→ Closed-loop stable if 1 + C(s)G(s) has real negative zeros:

T (s) =
s+a
s+b

1 + s+a
s+b

=
s+a
s+b

(s+b)+(s+a)
s+b
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Open loop vs closed loop stability

The open loop transfer function

C(s)G(s) = s + a
s + b (2)

has a zero at −a and pole at −b.

The characteristic equation of the closed-loop transfer function in a unit
feedback system becomes

1 + C(s)G(s) = 1 + s + a
s + b = s + a + s + b

s + b (3)

and has a pole at −b.

The pole is (3) the same as in (2) !

For close-loop stability, the zeros of the characteristic equation, i.e. the zeros
of 1 + C(s)G(s), must have negative real parts.
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Function mapping
Consider the hypothetical function

H(s) = s − 2

How can we determine the location of the zeros of H(s) graphically?

We can map any point from the s-plane into the "w" plane:
→ s = 2 + 2j becomes H(2 + 2j) = 2j
→ s = 1 + j becomes H(1 + j) = −1 + j
→ s = −j becomes H(−j) = −2− j
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Cauchy’s argument principle

H(s) =|H(s)|∠H(s)

=|k|
∏n

i=1 |s + zi |∏m
k=1 |s + pk |

(
n∑

i=1

∠(s + zi )−
m∑

k=1

∠(s + pk )

)
=|H(s)|

(∑
φi −

∑
φk

)
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Cauchy’s argument principle

1 - Select a point P in the s-plane

2 - Draw the vectors from P to each zero and pole

3 - Calculate the magnitude of each vector

4 - The magnitude is the product of magnitude of zeros divided by the product
of the magnitude of poles

5 - The angle is
φ = φ1 + φ2 − φ3 − φ4
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Cauchy’s argument principle

As s traverses Γ2, the net angle change of φ is

As s traverses Γ1, the net angle change of |φ| is
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Cauchy’s argument principle

As s traverses Γ1, the net angle change of φ is
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Cauchy’s argument principle

As s traverses Γ1, the net angle change of φ is
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Cauchy’s argument principle
Assume that the characteristic equation of 1 + C(s)G(s) has:

→ A number P of poles in the right-half plane.
→ A number N of zeros in the right-half plane.

For an contour that encircles the entire right-half plane:

The relation between P, Z , and the net number N of clockwise encirclements
of the origin is:

N =
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Cauchy’s argument principle
A contour map of a complex function will encircle the origin

N = Z − P

times, where Z is the number of zeros and P is the number of poles of the
function inside the contour.

The number of unstable poles are known: They are the same as in the
open-loop transfer function!
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Nyquist plot

Assuming that there are no poles in the right-half plane, are the following
systems stable?

1 + C(s)G(s) = 0
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Nyquist plot

1 + C(s)G(s) = 0. (4)
If there is a zero or pole of (4) in the right-half s-plane, the contour of (4)
encircles the origin.

Subtracting 1 from the above equation shifts the contour to the left

Thus, if the open-loop equation

T (s) = C(s)G(s) (5)
has a zero or pole in the right-half s-plane, the contour of (5) encircles -1.
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The Nyquist Stability Criterion

An open-loop transfer function L(s) has Z unstable closed-loop roots given by

Z = N + P

where

→ N is the number of clockwise encirclements of −1

→ P is the number of poles in the right-half s-plane

Note: If encirclements are in the counterclockwise direction, N is negative.

For stability, we wish to have Z = 0.
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The Nyquist Stability Criterion

A open-loop transfer function L(s) is closed-loop stable if and only if:

The number of counterclockwise encirclements of the −1 + 0j point is equal to
the number of poles of L(s) with positive real parts.

Z = N + P
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Example 1
Is this closed-loop system stable?

The Nyquist plot of the open-loop transfer function L(s) = s+1
s−0.5 is
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Example 1 - continued

The closed-loop transfer function is

T (s) =
s+1

s−0.5

1 + s+1
s−0.5

= s + 1
2s + 0.5

Step response
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Example 2
Is this closed-loop system stable?

The Nyquist plot of the open-loop transfer function L(s) = s−1
(s−0.25)2 is
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Example 2 - continued

The closed-loop transfer function is

T (s) =
s−1

s2−0.5s+0.0625

1 + s−1
s2−0.5s+0.0625

= s − 1
s2 + 0.5s − 0.9375

The poles are: −1.25 and 0.75 and the step response is
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0
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m

pl
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Time (seconds)

1 + L(s) has ONE unstable zero.
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Nyquist plot

How to create the Nyquist plot for a given function?

Next class!
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Exercise 105

The Nyquist plot of a conditionally stable open loop system is shown in the
figure.

(a) Determine whether the closed-loop system is stable

(b) Determine whether the closed-loop system is stable if the −1 point lies at
the dot on the axis.
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Exercise 105 - continued
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Exercise 106

A unit feedback system has a loop transfer function

L(s) = C(s)G(s) = k
τs − 1

where k = 0.5 and τ = 1. Based on its Nyquist plot show below, determine
whether the system is stable.
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Exercise 106 - continued

L(s) = C(s)G(s) = 0.5
s − 1
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Exercise 106 - continued
What value of k is required for stability?

L(s) = C(s)G(s) = k
s − 1
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Exercise 107

A loop transfer function is

L(s) = 1
s + 2

Using the contour in the s-plane shown, determine the corresponding contour
in the F (s) (or "w") plane.
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Exercise 107 - continued

L(s) = 1
s + 2
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Exercise 108

Based on the Nyquist plot, evaluate the stability of

T (s) = s
(s − 0.1)2
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Exercise 109

Based on the Nyquist plot, evaluate the stability of

T (s) = 50
(s + 5)(s − 9)
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Exercise 110

Based on the Nyquist plot, evaluate the stability of

T (s) = s + 0.5
s3 + s2 + 1
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Exercise 111

Based on the Nyquist plot, evaluate the stability of

T (s) = 10 s + 0.5
s3 + s2 + 1
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Next class...

• Nyquist plot
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