MECE 3350U
Control Systems

Lecture 15
 Midterm Examination Review and Practice Exercises

Midterm exam - Section 21

When: Monday, Nov 12, 9:40-11:00
What: Lectures 1 to 15
Where: Room split by first name:

$$
\begin{array}{cc}
\text { A-J } & \text { K-Z } \\
\text { UA2120 } & \text { UL9 }
\end{array}
$$

Prepare your formula sheet (1 page, letter size, both sides)

Everything must be handwritten

Your formula sheet cannot exceed 1 page (letter size), both sides.
Please write your name/student ID on the formula sheet
\rightarrow Bring a photo ID or student card.
\rightarrow Exam problems are in line with those solved in class, tutorials, and assignments.

First order transfer functions

First order functions are written in the from

$$
T(s)=\frac{k}{s+\sigma}
$$

where $\tau=\frac{1}{\sigma}$ is called the time constant. The response to an unit step response is

$$
y(t)=1-k e^{-\sigma t}
$$

Real Axis (seconds ${ }^{-1}$)
If $\sigma>0$, the pole is on the left-half s -plane.
If $\sigma<0$, the pole is on the right-half s-plane.

Second order response

A second order system is typically represented as

$$
T(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$\Rightarrow \zeta$ is the damping ratio
$\Rightarrow \omega_{n}$ is the undamped natural frequency
The poles of the transfer function are:

$$
\begin{aligned}
& s_{1}=\omega_{n}\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \\
& s_{2}=\omega_{n}\left(-\zeta-\sqrt{\zeta^{2}-1}\right)
\end{aligned}
$$

$\zeta>1$ Overdamped system
$0<\zeta<1$ Underdamped system
$\zeta=1$ Critically damped system
$\zeta=0$ Undamped system, $\zeta<0$ Unstable

Summary

Summary

Performance of feedback control systems

\rightarrow Steady estate error
\rightarrow Rise time T_{r}, peak time T_{p}, and peak value $M_{p t}$
\rightarrow Settling time $T_{s}: y(t)$ within 2% of its final value
\rightarrow Percent overshoot P.O.

Performance of feedback control systems

Peak time

$$
T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}
$$

Magnitude at the peak time

$$
M_{p t}=1+e^{-\zeta \pi / \sqrt{1-\zeta^{2}}}
$$

Percentage overshoot

$$
\text { P.O. }=100 e^{-\zeta \pi / \sqrt{1-\zeta^{2}}}
$$

Settling time

$$
T_{s}=\frac{4}{\zeta \omega_{n}}=4 \tau
$$

Block diagrams

The tree fundamental operations are
\rightarrow Obtain a block diagram from a transfer function
\rightarrow Obtain a transfer function from a block diagram
\rightarrow Simplify a block diagram

Dominant poles

If the magnitude of the real part of a pole is at least 5 to 10 times that of a dominant pole, then the pole may be regarded as insignificant.

The Routh-Hurwitz criterion

This criterion is a necessary and sufficient condition for stability
Order the coefficient of the characteristic equation

$$
\begin{equation*}
\Delta(s)=q(s)=a_{n} s^{n}+a_{n-1} s^{s-1}+\ldots+a_{1} s+a_{0}=0 \tag{1}
\end{equation*}
$$

Into an array as follows:

$$
\begin{array}{l|llll}
s^{n} & a_{n} & a_{n-2} & a_{n-4} & \ldots \tag{2}\\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \ldots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \\
s_{0} & h_{n-1} & & &
\end{array}
$$

The number of roots with positive real pats is equation to the number of changes in sign of the first column.

The Routh-Hurwitz criterion

Step 1: The highest order of $q(s)$ goes on the top-left column from n to 0 .
Step 2: From the second column, the first two rows are the coefficients of the characteristic equation

$$
\begin{array}{l|llll|}
\cline { 2 - 5 } s^{n} & a_{n} & a_{n-2} & a_{n-4} & \cdots \tag{3}\\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \cdots \\
\cline { 2 - 4 } s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \cdots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \\
s_{0} & h_{n-1} & & &
\end{array}
$$

Step 3: Fill out the reminder rows

s^{n}	a_{n}	a_{n-2}	a_{n-4}	\cdots
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	\cdots
s^{n-2}	b_{n-1}	b_{n-3}	b_{n-5}	\cdots
s^{n-3}	c_{n-1}	c_{n-3}	c_{n-5}	\cdots

$$
b_{n-1}=\frac{-1}{a_{n-1}}\left\|\begin{array}{ll}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right\|
$$

$s_{0} \quad h_{n-1}$

The root locus method
How does the location of the poles of a transfer function with characteristic equation

$$
1+k L(s)
$$

change, as k goes from 0 to infinity?

The characteristic equations is

$$
\begin{aligned}
& 1+\frac{1}{s(s+A)}=0 \\
& s^{2}+A s+1=0 ; \rightarrow\left(s^{2}+1\right)+A s=0 \\
& \frac{\left(s^{2}+1\right)}{\left(s^{2}+1\right)}+A \frac{s}{\left(s^{2}+1\right)}=0 \\
& 1+A \frac{s}{s^{2}+1}=0
\end{aligned}
$$

Steps for drawing the root locus

Step 1 Prepare the characteristic equation in the form of

$$
\begin{equation*}
1+k H(s)=0 \tag{4}
\end{equation*}
$$

Step 2 Locate the poles and zeros of $H(s)$ in the plane
Step 3 Locate the segments of the of the real axis that are root loci. Root loci are to the left of an odd number of poles and zeros.

Step 4 Calculate the angle θ and centre α of asymptotes of loci that tend to infinity

$$
\theta=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m} \quad \alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

Step 5 Determine the points at which the loci cross the imaginary axis. Use Routh-Hurwitz criterion.

Step 6 Determine the breakaway point on the real axis.

Steps for drawing the root locus

Step 7 Determine the angle of locus departure from complex poles and the angle of locus at arrival at complex zeros using the phase criterion.

$$
\begin{aligned}
q \phi & =\sum \psi-\sum \phi-180^{\circ}-\ell 360^{\circ} \\
q \psi & =\sum \phi-\sum \psi+180^{\circ}+\ell 360^{\circ}
\end{aligned}
$$

Step 8

Complete the root locus

Step 9

You may check you results using the Matlab function "rlocus(H);".

PID controller

PID gain	Overshoot	Settling time	Steady-state error
Increasing k_{p}	Increases	Minimal impact	Decreases
Increasing k_{i}	Increases	Increases	Zero error
Increasing k_{d}	Decreases	Decreases	No impact

Ziegler-Nichols PID tuning - Method 1

Controller type	k_{p}	k_{i}	k_{d}
Proportional $C(s)=k_{p}$	$0.5 k_{u}$	0	0
Proportional-integral	$0.45 k_{u}$	$\frac{0.54 k_{u}}{T_{u}}$	0
$C(s)=k_{p}+k_{i} s^{-1}$			
PID	$0.6 k_{u}$	$\frac{1.2 k_{u}}{T_{u}}$	$\frac{0.6 k_{u} T_{u}}{8}$
$C(s)=k_{p}+k_{i} s^{-1}+k_{d} s$			

Ziegler-Nichols PID tuning - Method 2

Controller type	k_{p}	k_{i}	k_{d}
Proportional $C(s)=k_{p}$	$\frac{1}{R \Delta T}$	0	0
Proportional-integral	$\frac{0.9}{R \Delta T}$	$\frac{0.27}{R \Delta T^{2}}$	0
$C(s)=k_{p}+k_{i} s^{-1}$			
PID	$\frac{1.2}{R \Delta T}$	$\frac{0.6}{R \Delta T^{2}}$	$\frac{0.6}{R}$
$C(s)=k_{p}+k_{i} s^{-1}+k_{d} s$			

Exercise 73

In the system shown, a force u is applied to the mass M and another m is connected to it. The coupling between the objects is often modelled by a spring constant k with a damping coefficient b. Write the equations of motion in the Laplace domain. ${ }^{1}$

[^0]
Exercise 74

Based on the equations obtained in Exercise 68, draw a block diagram for the system of two masses.

Exercise 75

Find the transfer function between the position of the truck and the position of the cart. ${ }^{2}$

$$
{ }^{2} T(s)=(b s+k) /\left(m s^{2}+b s+k\right)
$$

Exercise 76

Without computing the inverse transformation, sketch the temporal response of the following transfer functions to a step input. Specify the steady state value. Verify your plots using Matlab. ${ }^{3}$

$$
\begin{aligned}
& T(s)=\frac{1}{s^{2}+s+a} \\
& D(s)=\frac{1}{s^{2}+5 s+1} \\
& R(s)=\frac{1}{s^{2}+2} \\
& H(s)=\frac{50}{s^{2}+15 s+50}
\end{aligned}
$$

[^1]
Exercise 77

A robot includes significant flexibility in the arm members with a heavy load in the gripper. A two-mass model of the robot is shown in the figure. Find the transfer function $Y(s) / F(s) .{ }^{4}$

$$
{ }^{4} T(s)=\frac{\frac{1}{m M}(b s+k)}{s^{2}\left[s^{2}+\left(1+\frac{m}{M}\right)\left(\frac{b}{m} s+\frac{k}{m}\right)\right]}
$$

Exercise 78

Find the transfer function $Y(s) / R(s)$ for the block diagram shown. ${ }^{5}$

$$
{ }^{5} T(s)=\frac{G_{1}}{1+G_{1}}+G_{2}
$$

Exercise 79

Find the transfer function $Y(s) / R(s)$ for the block diagram shown. ${ }^{6}$

$$
{ }^{6} T(s)=G_{7}+\frac{G_{1} G_{3} G_{4} G_{6}}{\left(1+G_{1} G_{2}\right)\left(1+G_{4} G_{5}\right)}
$$

Exercise 80

Consider the LRC circuit shown.

Find the following:
(a) The time domain equation relating $i(t)$ and $v_{1}(t)$
(b) The time domain equation relating $i(t)$ and $v_{2}(t)$
(c) The transfer function $V_{2}(s) / V_{1}(s)$
(d) The circuit damping ration and the natural frequency
(e) The value of R that results in $v_{2}(t)$ having an overshoot no more than 25% for an unit step of $v_{1}(t)$. Take $L=10 \mathrm{mH}, C=4 \mu \mathrm{~F}$.

Exercise 80 - continued

Solution
(a) $v_{1}(t)=L \frac{d i(t)}{d t}+R i+\frac{1}{C} i(t) d t$
(b) $v_{2}(t)=\frac{1}{C} i(t) d t$
(c) $\frac{V_{2}(s)}{V_{1}(s)}=\frac{1}{s^{2} L C+s R C+1}$
(e) For 25% overshoot, $\zeta=0.4$ and thus $R=40 \Omega$

Exercise 81

For the unit feedback closed-loop system shown, specify the proportional controller gain k so that the output $y(t)$ has an overshoot of no more than 10% in response to a unit step. ${ }^{7}$

[^2]
Exercise 82

For the unit feedback closed-loop system shown, specify the proportional controller gain k and the location of the pole a so that the output $y(t)$ has an overshoot of no more than 25%, and a settling time of no more than 0.1 sec in response to a unit step. ${ }^{8}$

Verify your results using Matlab.
${ }^{8} \zeta \geq 0.4037, \omega_{n} \approx 114$, thus $a=67.1$, and $k \approx 113$.

Exercise 83

Two closed-loop transfer functions are given below.

$$
\begin{aligned}
& \frac{Y(s)}{R(s)}=\frac{2}{s^{2}+2 s+2} \\
& \frac{Y(s)}{R(s)}=\frac{2 s+6}{2\left(s^{2}+2 s+2\right)}
\end{aligned}
$$

In each case, provide estimates of the rise-time, settling time, and percent overshoot to a unit input in $r(t) .{ }^{9}$

$$
{ }^{9} t_{r}=1.27 t_{s}=4.6 \mathrm{sec}, M_{p}=5 \%, \zeta=0.5
$$

Exercise 84

Using Routh's stability criterion, determine how many roots with positive real parts the following equations have. ${ }^{10}$
(a) $s^{4}+8 s^{3}+32 s^{2}+80 s+100=0$
(b) $s^{4}+2 s^{3}+7 s^{2}-2 s+8=0$
(c) $s^{3}+s^{2}+20 s+78=0$
(d) $s^{4}+6 s^{2}+25=0$

[^3]
Exercise 85

The transfer function of a typical hard drive system is given by

$$
G(s)=\frac{k(s+4)}{s(s+0.5)(s+1)\left(s^{2}+0.4 s+4\right)}
$$

Using Routh's stability criterion, determine the range of k for which this system is stable when the characteristic equation is $1+G(s)=0 .{ }^{11}$

[^4]
Exercise 86

Consider the following closed-loop system

where

$$
G(s)=\frac{1}{s}, \quad D(s)=\frac{k}{s+p}
$$

Find k, and p so that the system has a 10% overshoot to a step input and a settling time of $1.5 \mathrm{sec} .^{12}$

$$
{ }^{12} \zeta=0.7, k=20.25, p=6.3
$$

Exercise 87

Consider the satellite altitude controller shown where the parameters are
$J=10$ space craft inertia ($\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{sec}^{2} / \mathrm{rad}$),
θ_{r} reference satellite altitude (rad)
θ actual satellite altitude (rad)
w disturbance torque ($\mathrm{N} \cdot \mathrm{m}$)

Continued next slide

Exercise 87 - continued

(a) Use propositional controller $(D(s)=k)$ and evaluate the stability of the system.

Determine the steady-state value of θ for the following scenarios
(b) Using PD control and a unit step reference input.
(c) Using PD control and a unit disturbance step input.
(d) Using PI control control and a unit step reference input.
(e) Using PI control and a unit disturbance step input.
(f) Using PID control and a unit step reference input.
(g) Using PID control and a unit disturbance step input.
(a) The system is unstable, (b) 1 rad , (c) $1 /\left(k_{p}\right)$, (d-e) the system is unstable, (f) 1 rad , (g) 0

Exercise 88

Consider the system shown with PI control ${ }^{13}$

(a) Determine the transfer function from $Y(s) / R(s)$ and $Y(s) / W(s)$,
(b) Use Routh's criterion to find the range of k_{p} and k_{i} for which the system is stable.

[^5]
Exercise 89

Sketch the root locus

Exercise 89-continued

To verify your results using Matlab, copy and past the following code

$$
s=\operatorname{tf}\left(\left[\begin{array}{ll}
10],[1]) ;
\end{array}\right.\right.
$$

figure
rlocus((s+10)/(s*(s+5)))
figure
rlocus((s+5)/(s*s))
figure
rlocus((s+10)*(s+8)/(s*(s+4)))

Exercise 90

Sketch the root locus with respect to the parameter α, estimate the closed-loop pole locations, and sketch the corresponding step responses when $\alpha=0, \alpha=0.5$ and $\alpha=2$. Use Matlab to check the accuracy of your approximate step responses ${ }^{14}$.

${ }^{14}$ The characteristic equation is $1+\alpha \frac{s}{s^{2}+2 s+5}$

Exercise 91

A control system for positioning the head of a floppy disk drive has the closed-loop transfer function

$$
T(s)=11.1 \frac{s+18}{(s+20)\left(s^{2}+4 s+10\right)}
$$

Plot the poles and zeros of this system and discuss the dominance of the complex poles. What percentage overshoot for a step input do you expect? Compare the results with the actual response using Matlab. ${ }^{15}$

[^6]
Exercise 92

A unit feedback control system has the loop transfer function

$$
L(s)=k \frac{s^{2}+10 s+30}{s^{2}(s+10)}
$$

We desire the dominant roots to have a damping ratio of $\zeta=0.707$. Find the gain k when this condition is satisfied. ${ }^{16}$

Next class...

- Midterm examination

[^0]: ${ }^{1} m \ddot{x}=-k(x-y)-b(\dot{x}-\dot{y})$
 $M \ddot{y}=u+k(x-y)+b(\dot{x}-\dot{y})$

[^1]: ${ }^{3}$ Solutions can be found using Matlab

[^2]: ${ }^{7} \zeta \geq 0.591$, thus $0<k \leq 2.86$

[^3]: ${ }^{10}$ Use the provided Matlab code to check your answers.

[^4]: ${ }^{11} 0<k<0.78$

[^5]: ${ }^{13}(\mathrm{~b}), k_{i}>0$ and $k_{p}>k_{i}-2$

[^6]: ${ }^{15}$ Dominant poles: 7.69%, actual overshoot 8%

