MECE 3350U Control Systems

Lecture 15 Midterm Examination Review and Practice Exercises

• • = •

-

Midterm exam - Section 21

When: Monday, Nov 12, 9:40-11:00

What: Lectures 1 to 15

Where: Room split by first name:

A-J	K-Z
UA2120	UL9

Prepare your formula sheet (1 page, letter size, both sides)

Everything must be handwritten

Your formula sheet cannot exceed 1 page (letter size), both sides.

Please write your name/student ID on the formula sheet

 \rightarrow Bring a photo ID or student card.

 \rightarrow Exam problems are in line with those solved in class, tutorials, and assignments.

First order transfer functions

First order functions are written in the from

$$T(s) = rac{k}{s+\sigma}$$

where $\tau=\frac{1}{\sigma}$ is called the time constant. The response to an unit step response is

$$y(t) = 1 - k e^{-\sigma t}$$

If $\sigma > 0$, the pole is on the left-half s-plane.

If $\sigma < 0$, the pole is on the right-half s-plane.

Second order response

A second order system is typically represented as

$$T(s) = rac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

 $\Rightarrow \zeta$ is the damping ratio

 $\Rightarrow \omega_n$ is the undamped natural frequency

The poles of the transfer function are:

$$\begin{split} \mathbf{s}_1 &= \omega_n \left(-\zeta + \sqrt{\zeta^2 - 1} \right) \\ \mathbf{s}_2 &= \omega_n \left(-\zeta - \sqrt{\zeta^2 - 1} \right) \end{split}$$

 $\zeta > 1$ Overdamped system

 $0 < \zeta < 1$ Underdamped system

 $\zeta = 1$ Critically damped system

 $\zeta = 0$ Undamped system, $\zeta < 0$ Unstable

· ★ 문 ▶ · ★ 문 ▶ · · 문

Summary

Summary

Lecture 15

Performance of feedback control systems

 \rightarrow Steady estate error

- \rightarrow Rise time T_r , peak time T_p , and peak value M_{pt}
- \rightarrow Settling time T_s : y(t) within 2% of its final value
- \rightarrow Percent overshoot *P*.*O*.

Performance of feedback control systems

Peak time

$$T_{p} = \frac{\pi}{\omega_{n}\sqrt{1-\xi^{2}}}$$

Magnitude at the peak time

$$M_{pt} = 1 + e^{-\zeta \pi/\sqrt{1-\zeta^2}}$$

Percentage overshoot

$$P.O. = 100e^{-\zeta \pi / \sqrt{1 - \zeta^2}}$$

Settling time

$$T_s = \frac{4}{\zeta \omega_n} = 4\tau$$

MECE 3350 - C. Rossa

▶ ★ 프 ► ★ 프 ► = 프

Block diagrams

The tree fundamental operations are

- \rightarrow Obtain a block diagram from a transfer function
- \rightarrow Obtain a transfer function from a block diagram
- \rightarrow Simplify a block diagram

- ∢ ⊒ →

Dominant poles

If the magnitude of the real part of a pole is at least 5 to 10 times that of a dominant pole, then the pole may be regarded as insignificant.

The Routh-Hurwitz criterion

This criterion is a necessary and sufficient condition for stability

Order the coefficient of the characteristic equation

$$\Delta(s) = q(s) = a_n s^n + a_{n-1} s^{s-1} + \ldots + a_1 s + a_0 = 0$$
 (1)

Into an array as follows:

The number of roots with positive real pats is equation to the number of changes in sign of the first column.

The Routh-Hurwitz criterion

Step 1: The highest order of q(s) goes on the top-left column from *n* to 0.

Step 2: From the second column, the first two rows are the coefficients of the characteristic equation

Step 3: Fill out the reminder rows

The root locus method

How does the location of the poles of a transfer function with characteristic equation

1 + kL(s)

change, as k goes from 0 to infinity?

The characteristic equations is

$$1 + \frac{1}{s(s+A)} = 0$$

$$s^{2} + As + 1 = 0; \rightarrow (s^{2} + 1) + As = 0$$

$$\frac{(s^{2} + 1)}{(s^{2} + 1)} + A \frac{s}{(s^{2} + 1)} = 0$$

$$1 + A \frac{s}{s^{2} + 1} = 0$$

Steps for drawing the root locus

Step 1 Prepare the characteristic equation in the form of

$$1 + kH(s) = 0 \tag{4}$$

Step 2 Locate the poles and zeros of H(s) in the plane

Step 3 Locate the segments of the of the real axis that are root loci. Root loci are to the left of an odd number of poles and zeros.

Step 4 Calculate the angle θ and centre α of asymptotes of loci that tend to infinity

$$\theta = \frac{180^{\circ} + 360^{\circ}(q-1)}{n-m} \qquad \qquad \alpha = \frac{\sum p_i - \sum z_i}{n-m}$$

Step 5 Determine the points at which the loci cross the imaginary axis. Use Routh-Hurwitz criterion.

Step 6 Determine the breakaway point on the real axis.

Steps for drawing the root locus

Step 7 Determine the angle of locus departure from complex poles and the angle of locus at arrival at complex zeros using the phase criterion.

$$q\phi = \sum \psi - \sum \phi - 180^{\circ} - \ell 360^{\circ}$$

$$q\psi = \sum \phi - \sum \psi + 180^{\circ} + \ell 360^{\circ}$$

Step 8

Complete the root locus

Step 9

You may check you results using the Matlab function "rlocus(H);".

(日)

PID controller

PID gain	Overshoot	Settling time	Steady-state error
Increasing k_p	Increases	Minimal impact	Decreases
Increasing k_i	Increases	Increases	Zero error
Increasing k_d	Decreases	Decreases	No impact

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 の Q ()

Ziegler-Nichols PID tuning - Method 1

(1日) (1日) (日) (日) (日)

Ziegler-Nichols PID tuning - Method 2

Lecture 15

臣

御 と く ヨ と く ヨ と …

In the system shown, a force u is applied to the mass M and another m is connected to it. The coupling between the objects is often modelled by a spring constant k with a damping coefficient b. Write the equations of motion in the Laplace domain. ¹

$${}^{1}m\ddot{x} = -k(x-y) - b(\dot{x} - \dot{y})$$

$$M\ddot{y} = u + k(x-y) + b(\dot{x} - \dot{y})$$

Lecture 15

Based on the equations obtained in Exercise 68, draw a block diagram for the system of two masses.

イロト イポト イヨト イヨト

Find the transfer function between the position of the truck and the position of the cart. $^{2} \ \ \,$

$$^{2}T(s) = (bs + k)/(ms^{2} + bs + k)$$

MECE 3350 - C. Rossa

Without computing the inverse transformation, sketch the temporal response of the following transfer functions to a step input. Specify the steady state value. Verify your plots using Matlab.³

$$T(s) = \frac{1}{s^2 + s + a}$$
$$D(s) = \frac{1}{s^2 + 5s + 1}$$
$$R(s) = \frac{1}{s^2 + 2}$$
$$H(s) = \frac{50}{s^2 + 15s + 50}$$

³Solutions can be found using Matlab

A robot includes significant flexibility in the arm members with a heavy load in the gripper. A two-mass model of the robot is shown in the figure. Find the transfer function Y(s)/F(s).⁴

$${}^{4}T(s) = \frac{\frac{1}{mM}(bs+k)}{s^{2}\left[s^{2}+(1+\frac{m}{M})(\frac{b}{m}s+\frac{k}{m})\right]}$$

御 とくほとくほとう

Find the transfer function Y(s)/R(s) for the block diagram shown.⁵

$${}^{5}T(s) = \frac{G_1}{1+G_1} + G_2$$

MECE 3350 - C. Rossa

イロト イヨト イヨト イヨト

Find the transfer function Y(s)/R(s) for the block diagram shown.⁶

$$^{6}T(s) = G_{7} + \frac{G_{1}G_{3}G_{4}G_{6}}{(1+G_{1}G_{2})(1+G_{4}G_{5})}$$

MECE 3350 - C. Rossa

Consider the LRC circuit shown.

Find the following:

- (a) The time domain equation relating i(t) and $v_1(t)$
- (b) The time domain equation relating i(t) and $v_2(t)$
- (c) The transfer function $V_2(s)/V_1(s)$
- (d) The circuit damping ration and the natural frequency

(e) The value of R that results in $v_2(t)$ having an overshoot no more than 25% for an unit step of $v_1(t)$. Take L = 10 mH, $C = 4\mu$ F.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Exercise 80 - continued

Solution

(a)
$$v_1(t) = L \frac{di(t)}{dt} + Ri + \frac{1}{C}i(t)dt$$

(b) $v_2(t) = \frac{1}{C}i(t)dt$
(c) $\frac{V_2(s)}{V_1(s)} = \frac{1}{s^2 LC + sRC + 1}$
(e) For 25% overshoot, $\zeta = 0.4$ and thus $R = 40\Omega$

For the unit feedback closed-loop system shown, specify the proportional controller gain k so that the output y(t) has an overshoot of no more than 10% in response to a unit step.⁷

 $^{7}\zeta > 0.591$, thus 0 < k < 2.86

B 6 4 B 6 -

For the unit feedback closed-loop system shown, specify the proportional controller gain k and the location of the pole a so that the output y(t) has an overshoot of no more than 25%, and a settling time of no more than 0.1 sec in response to a unit step.⁸

Verify your results using Matlab.

 $^{^{8}\}zeta > 0.4037$, $\omega_n \approx 114$, thus a = 67.1, and $k \approx 113$.

Two closed-loop transfer functions are given below.

$$\frac{Y(s)}{R(s)} = \frac{2}{s^2 + 2s + 2}$$

$$rac{Y(s)}{R(s)} = rac{2s+6}{2(s^2+2s+2)}$$

In each case, provide estimates of the rise-time, settling time, and percent overshoot to a unit input in r(t).⁹

$${}^{9}t_{r} = 1.27 t_{s} = 4.6 \text{ sec}, M_{p} = 5\%, \zeta = 0.5$$

Using Routh's stability criterion, determine how many roots with positive real parts the following equations have. $^{10}\,$

(a)
$$s^4 + 8s^3 + 32s^2 + 80s + 100 = 0$$

(b) $s^4 + 2s^3 + 7s^2 - 2s + 8 = 0$
(c) $s^3 + s^2 + 20s + 78 = 0$
(d) $s^4 + 6s^2 + 25 = 0$

 10 Use the provided Matlab code to check your answers. \checkmark \Box \triangleright \checkmark

• • = •

The transfer function of a typical hard drive system is given by

$$G(s) = \frac{k(s+4)}{s(s+0.5)(s+1)(s^2+0.4s+4)}$$

Using Routh's stability criterion, determine the range of k for which this system is stable when the characteristic equation is 1 + G(s) = 0.¹¹

 $^{11}0 < k < 0.78$

(日)

Consider the following closed-loop system

where

$$G(s) = \frac{1}{s}, \qquad D(s) = \frac{k}{s+p}$$

Find *k*, and *p* so that the system has a 10% overshoot to a step input and a settling time of 1.5 sec.¹²

 $^{12}\zeta = 0.7, \ k = 20.25, \ p = 6.3$

Consider the satellite altitude controller shown where the parameters are

- J = 10 space craft inertia (N·m·sec²/rad),
- θ_r reference satellite altitude (rad)
- θ actual satellite altitude (rad)

w disturbance torque $(N \cdot m)$

Continued next slide

Exercise 87 - continued

(a) Use propositional controller (D(s) = k) and evaluate the stability of the system.

Determine the steady-state value of θ for the following scenarios

(b) Using PD control and a unit step reference input.

(c) Using PD control and a unit disturbance step input.

(d) Using PI control control and a unit step reference input.

(e) Using PI control and a unit disturbance step input.

(f) Using PID control and a unit step reference input.

(g) Using PID control and a unit disturbance step input.

(a) The system is unstable, (b) 1 rad, (c) $1/(k_p)$, (d-e) the system is unstable, (f) 1 rad, (g) 0

Consider the system shown with PI control¹³

(a) Determine the transfer function from Y(s)/R(s) and Y(s)/W(s),

(b) Use Routh's criterion to find the range of k_p and k_i for which the system is stable.

```
<sup>13</sup>(b), k_i > 0 and k_p > k_i - 2
```


Exercise 89 - continued

To verify your results using Matlab, copy and past the following code

```
\begin{split} s &= tf([1 \ 0], [1]); \\ figure \\ rlocus((s+10)/(s^*(s+5))) \\ figure \\ rlocus((s+5)/(s^*s)) \\ figure \\ rlocus((s+10)^*(s+8)/(s^*(s+4))) \end{split}
```

Sketch the root locus with respect to the parameter α , estimate the closed-loop pole locations, and sketch the corresponding step responses when $\alpha = 0$, $\alpha = 0.5$ and $\alpha = 2$. Use Matlab to check the accuracy of your approximate step responses ¹⁴.

¹⁴The characteristic equation is $1 + \alpha \frac{s}{c^2 + 2c + 5}$

A control system for positioning the head of a floppy disk drive has the closed-loop transfer function

$$T(s) = 11.1 \frac{s+18}{(s+20)(s^2+4s+10)}$$

Plot the poles and zeros of this system and discuss the dominance of the complex poles. What percentage overshoot for a step input do you expect? Compare the results with the actual response using Matlab.¹⁵

Lecture 15

¹⁵Dominant poles: 7.69%, actual overshoot 8%

A unit feedback control system has the loop transfer function

$$L(s) = k \frac{s^2 + 10s + 30}{s^2(s + 10)}.$$

We desire the dominant roots to have a damping ratio of $\zeta = 0.707$. Find the gain *k* when this condition is satisfied. ¹⁶

 $^{16}k = 16$

Next class...

• Midterm examination

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●