MECE 3350U
Control Systems

Lecture 12
 The Root-Locus Method 2/2

Outline of Lecture 12

By the end of today's lecture you should be able to

- Extend the concept of root locus
- Understand the applications of the Root-Locus method
- Apply Root-Locus method to a design problem

Review

Consider the following closed-loop system:

The closed-loop transfer function is

$$
\begin{equation*}
T(s)=\frac{k G(s)}{1+k G(s)} \tag{1}
\end{equation*}
$$

And the characteristic equations is

$$
\begin{equation*}
1+k G(s)=0 \tag{2}
\end{equation*}
$$

Review

To analyse the influence of a given parameter of interest k, the characteristic equation of the closed-loop system must in the format

$$
\begin{equation*}
1+k H(s)=0 \tag{3}
\end{equation*}
$$

$\Rightarrow k$ is the parameter of interest
$\Rightarrow H(s)$ is a function of s

$$
\begin{equation*}
1+k \frac{P(s)}{Q(s)}=0 \tag{4}
\end{equation*}
$$

If $k=0$, the poles of $T(s)$ are the roots of $Q(s)$
If $k \rightarrow \infty$, the poles of $T(s)$ are the roots of $P(s)$
The root locus is the set of values of s for which $1+k H(s)=0$ is satisfied as the real parameter k varies from 0 to ∞.

Angle requirement

$$
\begin{equation*}
1+k G(s)=0, k G(s)=-1+j 0 \tag{5}
\end{equation*}
$$

If the open loop transfer function is

$$
\begin{equation*}
G(s)=k \frac{\left(s+z_{1}\right)\left(s+z_{2}\right)\left(s+z_{3}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right) \ldots\left(s+p_{n}\right)} \tag{6}
\end{equation*}
$$

The magnitude requirement for root locus is

$$
\begin{equation*}
|G(s)|=k \frac{\left|s+z_{1}\right|\left|s+z_{2}\right|\left|s+z_{3}\right| \ldots\left|s+z_{m}\right|}{\left|s+p_{1}\right|\left|s+p_{2}\right|\left|s+p_{3}\right| \ldots\left|s+p_{n}\right|}=1 \tag{7}
\end{equation*}
$$

The angle requirement for root locus is

$$
\begin{aligned}
\angle G(s)= & \angle\left(s+z_{1}\right)+\angle\left(s+z_{2}\right)+\ldots \\
& -\left[\angle\left(s+p_{1}\right)+\angle\left(s+p_{2}\right)+\ldots\right]=180^{\circ}+\ell 360^{\circ}
\end{aligned}
$$

where $\ell=1,2,3 \ldots$

Example 1

Sketch the root locus of the closed loop system as k varies from 0 to ∞.

Find the closed-loop transfer function.

$$
T(s)=\frac{\frac{(s+1)}{(s+2)(s+k)}}{1+\frac{(s+1)}{(s+2)(s+k)}}
$$

Prepare the characteristic equation as $1+k H(s)$.

$$
\begin{aligned}
1+\frac{s+1}{(s+2)(s+k)}=0 \rightarrow & (s+2)(s+k)+s+1=0 \\
& s^{2}+3 s+1+k(s+2)=0 \\
& 1+\frac{k(s+2)}{s^{2}+3 s+1}=0
\end{aligned}
$$

Example 1 - continued

$$
1+k \frac{s+2}{s^{2}+3 s+1}=1+k \frac{s+2}{(s+2.618)(s+0.382)}
$$

Locate the poles and zeros of $H(s)$ as defined in (2)
Draw the approximate root locus

What can we conclude?

Example 2

Find the root locus for as system whose characteristic equation is

$$
1+k \frac{s+1}{s^{3}+s^{2}+3 s+1} .
$$

The above can be rewritten as

$$
\begin{array}{ll}
n-m=2 \\
q=1 \\
\theta_{1}=9 \theta^{\circ}
\end{array} \quad 1+k \frac{s+1}{(s+0.36)(s+0.32+j 1.63)(s+0.32-j 1.63)} .
$$

Breakaway point

For the characteristic equation

$$
\begin{equation*}
1+k \frac{Q(s)}{P(s)}=0 \tag{8}
\end{equation*}
$$

Let $k=p(s)$ and rearrange (8) so that

$$
\begin{equation*}
p(s)=-\frac{P(s)}{Q(s)} \tag{9}
\end{equation*}
$$

The breakaway point satisfies

$$
\begin{equation*}
\frac{d p(s)}{d s}=\frac{d k}{d s}=0 \tag{10}
\end{equation*}
$$

Breakaway point - Example
Find the breakaway point for $\longrightarrow p(s)=\begin{aligned} & 1+p)(s+4) \\ & (s+2) \\ & p(s)=-(s+2)(s+4)\end{aligned}$

$$
\begin{equation*}
1+k \frac{1}{(s+2)(s+4)}=0 \tag{11}
\end{equation*}
$$

Let $k=p(s)$ and rewrite (11) as in (9)

Note:

$$
\begin{equation*}
p(s)=-(s+2)(s+4)=-\left(s^{2}+6 s+8\right) \quad \text { break } \tag{12}
\end{equation*}
$$

$p(-3)$ gives
K of the breekcowcy point

Imaginary axis crossing point

The point where the root locus crosses the imaginary axis indicates the maximum gain $k_{\text {max }}$ before instability.

How to find $k_{\max }$? \Rightarrow Use the Routh-Hurwitz method. Example:

$$
1+k \frac{1}{(s+1)(s+2)(s+3)}=0 \rightarrow s^{3}+6 s^{2}+11 s+6+k=0
$$

s_{3}	1	11
s_{2}	6	$6+k$
s_{1}	$\frac{6+k-66}{-6}$	0
s_{0}	$6+k$	0

Departure angle from a pole
In what direction does p_{1} move?
Recall the angle requirement:

$$
\angle G(s)=\left(s+z_{1}\right)+\angle\left(s+z_{2}\right)+\ldots
$$

$$
-\left[\angle\left(s+p_{1}\right)+\angle\left(s+p_{2}\right)+\ldots\right]=180^{\circ}+\ell 360^{\circ}
$$

$$
\sum \psi-\sum \phi=180^{\circ}+360^{\circ}(\ell)
$$

where
$\rightarrow \psi$ is the angle from a point to a zero;
$\rightarrow \phi$ is the angle from a point to a pole;
For any point in the plane we can write

$$
q \phi=\sum \psi-\sum \phi-180^{\circ}-\ell 360^{\circ}
$$

ℓ is an integer.

Departure from a pole

$$
\begin{aligned}
& \phi_{1}=180-\operatorname{atan}(4 / 4) \\
& \phi_{2}=135^{\circ}, \\
& \phi_{2}=90^{\circ}
\end{aligned}
$$

In what direction does p_{1} move?

$$
\begin{aligned}
& \text { Le berger ore. zeros poles } \\
& \searrow_{q \phi}=\sum \psi-\sum \phi-180^{\circ}-\ell 360^{\circ} \\
& \phi=0-\left(135^{\circ}+g \theta^{\circ}\right)-180^{\circ}-(-1)\left(360^{\circ}\right) \\
& \phi=-45^{\circ}
\end{aligned}
$$

(l is an integer e)

Arrival at a zero

The same approach can be used to determine the angles of arrival of a branch at a zero.

The 10 rules for drawing the root-locus

Rule 1: As k varies from 0 to ∞, there are n lines (loci) where n is the degree of $Q(s)$ or $P(s)$, whichever is greater.

Rule 2: As k varies from 0 to ∞, the roots of the characteristic equation move from the poles to the zeros of $H(s)$.

Rule 3: The root loci must be symmetrical with respect to the horizontal axis.
Rule 4: The a root cannot cross its path
Rule 5: The loci are on the real axis to the left of an odd number of poles and zeros.(that lie on the real atis)

Rule 6: Lines leave (break out) and enter (break in) the real axis at 90°

The 10 rules for drawing the root-locus

Rule 7: If there a different number of poles and zeros, extra lines that do not have a pair go to or come from infinity.

Rule 8: The angle of the asymptotes of the curves that go to infinity is

$$
\begin{equation*}
\phi=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m}, q=1,2, \ldots, n-m \tag{13}
\end{equation*}
$$

and they radiate out from the real axis at

$$
\begin{equation*}
\alpha=\frac{\sum \text { poles }-\sum \text { zeros }}{n-m} \tag{14}
\end{equation*}
$$

Rule 9: If there is a least two lines that go to infinity, then the sum of all the roots is constant.

Rule 10: If the gain sweeps from 0 to $-\infty$, the root loci can be drawn by reversing Rule 5 and adding a 180° to the asymptote angles.

Steps for drawing the root locus

Step 1

Prepare the characteristic equation in the form of

$$
\begin{equation*}
1+k H(s)=0 \tag{15}
\end{equation*}
$$

and factor the m poles and n zeros

$$
\begin{equation*}
1+k \frac{\prod_{i=1}^{m}\left(s+z_{i}\right)}{\prod_{j=1}^{n}\left(s+p_{j}\right)} \tag{16}
\end{equation*}
$$

Step 2
Locate the poles and zeros of $H(s)$ in the plane

Steps for drawing the root locus

Step 3

Locate the segments of the of the real axis that are root loci. Root loci are to the left of an odd number of poles and zeros.

Step 4

Calculate the angle θ and centre α of asymptotes of loci that tend to infinity

$$
\theta=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m} \quad \alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

Steps for drawing the root locus

Step 5

If applicable, determine the points at which the loci cross the imaginary axis. Use Routh-Hurwitz criterion.

s_{3}	a_{3}	a_{1}
s_{2}	a_{2}	a_{0}
s_{1}	b_{1}	0
s_{0}	c_{1}	0

Step 6

If applicable, determine the breakaway point on the real axis. Set $p(s)=k$, and find the minimum and/or maximum values of $p(s)$, i.e,:

$$
p(s)=-\frac{1}{H(s)}, \rightarrow \frac{d}{d s}\left[-\frac{1}{H(s)}\right]=0
$$

Steps for drawing the root locus

Step 7

Determine the angle of locus departure from complex poles and the angle of locus at arrival at complex zeros using the phase criterion.

Departure from a complex pole:

$$
q \phi=\sum \psi-\sum \phi-180^{\circ}-\ell 360^{\circ}
$$

Arrival at a complex zero

$$
q \psi=\sum \phi-\sum \psi+180^{\circ}+\ell 360^{\circ}
$$

Step 8

Complete the root locus

Step 9

You may check you results using the Matlab function "rlocus(H);".

Exercise 60

Determine the root-locus plot for the following closed-loop system.

Procedure:
Use the provided Matlab
code to check your
Follow the steps given in this lecture. answer (portal on B.B.)

Exercise 60 - continued

Step 1: Preparing the characteristic equation.

$$
1+k \frac{1}{s\left(s^{2}+6 s+25\right)}
$$

Step 2: Poles and zeros

$$
\begin{aligned}
& S=0 \\
& S=-3 \pm \varphi_{U}
\end{aligned}
$$

Step 3: Locate the segments of the loci

Exercise 60-continued

Step 4: The angle and centre of asymptotes

$$
n-m=3
$$

$$
\left.\begin{array}{lll}
& \theta=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m} & \alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m} \\
q=1 & q=2 & q=3
\end{array}\right) \alpha=\frac{-3-3+0}{3}=-2
$$

Exercise 60 - continued
root-locus

$$
s^{3}+6 s^{2}+25 s+k=0
$$

replace $s=J W$

Step 5: Points where the loci cross the imaginary axis

$$
\begin{aligned}
& (J w)^{3}+G(J w)^{2}+25(J w)+K=0 \\
& -J w^{3}-6 w^{2}+25 J w+K=0 \\
& \underbrace{-6 w^{2}+k+}_{R e} \underbrace{\omega w\left(25-w^{2}\right)}_{I m}=0
\end{aligned}
$$

\rightarrow Set Re $=0$
thus $w\left(25-w^{2}\right)=0$

$$
w=0
$$

$$
w= \pm 5
$$

Exercise 60 - continued

Step 6: Breakaway points

$$
\begin{aligned}
& p(s)=-\frac{1}{G(s)} \\
& p(s)=-s\left(s^{2}+6 s+25\right) \\
& \frac{d p(s)}{d s}=-\left(3 s^{2}+22 s+25\right)=0
\end{aligned}
$$

$$
\begin{equation*}
G(s)=\frac{1}{s\left(s^{2}+6 s+25\right)} \tag{17}
\end{equation*}
$$

$$
s=-2 \pm 2.08 \mathrm{~J}
$$

Since the result is an imaginary number,
there is NO breakaucy paint

$\phi=\sum \varphi-\sum \phi-280^{\circ}-\ell\left(360^{\circ}\right) \quad l$ is an integer

$$
\begin{aligned}
& \phi=0-\left(9 \theta^{\circ}+127^{\circ}\right)-180+360^{\circ} \quad l=1 \\
& \phi=-37^{\circ}
\end{aligned}
$$

\longrightarrow deperture of p_{1}

Exercise 61

Sketch the root loci for the system shown. Determine the range of k for which the closed-loop system is underdamped.

Follow the steps given in this lecture.
Determine the range of k for which the roots are complex.

Exercise 61－continued

The ayytom is underdanpal for $0.078<K<19$
critically domped for

$$
\begin{aligned}
& k=14 \\
& k=0.0718
\end{aligned}
$$

ourdanjel if $K>14$ ar

$$
K<0.078
$$

Exercise 61-continued

$$
k=-\frac{s(s+1)}{(s+3)(s+2)}
$$

See provious slido.

Exercise 62

Sketch the root loci for the system shown.

Follow the steps given in this lecture.

Exercise 62 - continued

$$
\begin{array}{ll}
n-m=2 \\
q=1 & q=2 \\
\theta_{1}=g_{\theta} & \theta_{2}=-90^{\circ}
\end{array} \quad H(s)=\frac{s+1}{s^{2}(s+3.6)} .
$$

Exercise 62-continued

$$
H(s)=\frac{s+1}{s^{2}(s+3.6)}
$$

Asymptotes: $90^{\circ},-90^{\circ}$, at $s=-1.3$.
Breakaway: $s=0$

Exercise 63

Sketch the root loci for the system shown.

Follow the steps given in this lecture.

Exercise 63 - continued

$$
H(s)=\frac{s+0.4}{s^{2}(s+3.6)}
$$

$$
\begin{array}{l|l|}
\begin{array}{ll}
n-m=2 \\
q=1 & q=2 \\
\theta_{1}=9 \theta^{\circ} & \theta_{2}=-9 \theta^{\circ}
\end{array} & \begin{array}{c}
\text { Break dewey point } \\
1+k \frac{s+0.4}{s^{2}(s+3.6)}=0 \quad k=p(s) \\
\alpha=\frac{\sum p-\sum z}{n-m} \\
p(s)=\frac{-s^{2}(s+3.6)}{s+0.4} \\
\alpha=\frac{0+0-3.6-(-0.4)}{2}=-2.6
\end{array} \\
\begin{array}{l}
\frac{d p(s)}{d s}=\frac{\left(3 s^{2}+7.2 s\right)(s+0.4)-\left(s^{3}+3.6 s^{2}\right)}{(s+0.4)^{2}}=0 \\
s^{3}+2.4 s^{2}+1.44 s=0 \\
\delta(s+1.2)^{2}=0 \\
s=0 \\
\delta=-1.2
\end{array}
\end{array}
$$

Exercise 63 - continued

$$
H(s)=\frac{s+0.4}{s^{2}(s+3.6)}
$$

Try to drove tho root-lows here before looking at the solution in the sat slide.

Exercise 63-continued

$$
H(s)=\frac{s+0.4}{s^{2}(s+3.6)}
$$

Asymptotes: $90^{\circ},-90^{\circ}$, at $s=-1.6$.
Breakaway: $s=0, s=-1.2$

Exercise 63 - note

An alternative way to find the root locus is to use the angle requirement.

$$
\angle\left[k \frac{s+0.4}{s^{2}(s+3.6)}\right]=180^{\circ}+\ell 360^{\circ}
$$

which can be rewritten as

$$
\angle(s+0.4)-2 \angle(s)-\angle(s+3.6)=180^{\circ}+\ell 360^{\circ} .
$$

Since $s=\sigma+j \omega$

$$
\angle(\sigma+j \omega+0.4)-2 \angle(\sigma+j \omega)-\angle(\sigma+j \omega+3.6)=180^{\circ}+\ell 360^{\circ}
$$

and $\angle s=\tan ^{-1}(\omega / \sigma)$, the root locus function satisfies

$$
\tan ^{-1}\left(\frac{\sigma}{\omega+0.4}\right)-2 \tan ^{-1}\left(\frac{\sigma}{\omega}\right)-\tan ^{-1}\left(\frac{\sigma}{\omega+3.6}\right)=180^{\circ}+\ell 360^{\circ}
$$

The angle of the root locus then is $d \omega / d \sigma$.

Exercise 64

Consider a unit feedback system with an open loop transfer function

$$
L(s)=\frac{k}{s^{3}+50 s^{2}+500 s+1000}
$$

(a) Find the breakaway point on the real axis
(b) Find the asymptote centroid
(c) Find the value of k at the breakaway point
(d) Draw the root locus for $k \geq 0$

Exercise 64 -continued

$$
1+\frac{k}{s^{3}+50 s^{2}+500 s+1000}=0 \int \begin{aligned}
& s=-10 \\
& s=-37 \\
& s=-2
\end{aligned}
$$

a)

$$
\begin{gathered}
p(\delta)=-\left(s^{3}+50 s+500 s+1000\right) \\
\frac{d p(s)}{d s}=-\left(3 s^{2}+100 s+500\right)=0 \\
\\
\delta=-27.2\binom{\text { Not on the root }}{\text { locus }} \\
\\
\delta=-6.12
\end{gathered}
$$

C) $p(-6.12)=416$

$$
k=416
$$

b)

$$
\begin{aligned}
& n-m=3 \\
& \theta=60^{\circ}, 180^{\circ},-60^{\circ} \\
& \alpha=\frac{-10-37-2}{3}=-26.33
\end{aligned}
$$

Exercise 65

The primary mirror of a large telescope can have a diameter of 10 m and a mosaic of 36 hexagonal segments with the orientation of each segment actively controlled. Suppose this unit feedback system for the mirror segments has the open loop transfer function

$$
L(s)=k \frac{1}{s\left(s^{2}+2 s+5\right)}
$$

(a) Find the asymptotes and sketch them in the s-plane
(b) Find the angle of departure from the complex poles
$\rightarrow(c)$ Determine the gain when 2 roots lie on the imaginary axis
(d) Sketch the root locus

Exercise 65 - continued

$$
1+k \frac{1}{s\left(s^{2}+2 s+5\right)}=0
$$

poles: $s=0$

$$
\begin{aligned}
& S=-1+2 J \\
& S=-1-2 J
\end{aligned}
$$

(a) Find the asymptotes and sketch them in the s-plane

$$
\begin{array}{lll}
n-m=3, & q=1,2,3 & q=3 \\
q=1 & q=2 & q=3 \\
\theta_{1}=60^{\circ} & \theta_{2}=180^{\circ} & \theta_{3}=-60^{\circ} \\
\alpha=\frac{\sum p-\sum z}{n-m}, & \alpha=\frac{-1-1-0}{3}, & \alpha=-\frac{2}{3}
\end{array}
$$

(b) Find the angle of departure from the complex poles

$$
\begin{gathered}
9 \theta^{\circ}+\phi+116.6^{\circ}=180^{\circ} \\
\phi=-26.6^{\circ}
\end{gathered}
$$

Exercise 65-continued

$$
1+k \frac{1}{s\left(s^{2}+2 s+5\right)}=0
$$

(c) Determine the gain when 2 roots lie on the imaginary axis

s^{3}	1	5
s^{2}	2	k
s^{1}	$5-\frac{k}{2}$	0
s^{0}	k	0

$$
\begin{gathered}
\text { if } 5-\frac{k}{2}=0, \text { roots lie on the } \\
\text { imagnearg asis } \\
k=10 \text { }
\end{gathered}
$$

(d) Sketch the root locus

Next class...

- PID controllers

