MECE 3350U
 Control Systems

Lecture 10

Routh-Hurwitz Stability Criterion

Outline of Lecture 10

By the end of today's lecture you should be able to

- Understand the principle of stability
- Define the conditions required for stability
- Apply to the Routh-Hurwitz stability criterion

Applications
Are these control systems stable without feedback control?

Applications

Example of destabilizing positive feedback.

Applications

High control loop gains can make a system unstable.

The concept of stability

A stable system is a dynamic system with a bounded response to a bounded input.

A system is stable is all closed-loop transfer function poles lie in the left-half s-plane.

Requirements for stability

Consider the generic transfer function:

$$
\begin{equation*}
T(s)=\frac{p(s)}{q(s)}=\frac{k \prod_{i=1}^{M}\left(s+z_{i}\right)}{s^{N} \prod_{k=1}^{Q}\left(s+\sigma_{k}\right) \prod_{m=1}^{R}\left[s^{2}+2 \alpha_{m} s+\left(\alpha_{m}^{2}+\omega_{m}^{2}\right)\right]} \tag{1}
\end{equation*}
$$

The output response for an impulse function input and $N=0$ is

$$
\begin{equation*}
y(t)=\sum_{k=1}^{Q} A_{k} e^{-\sigma_{k} t}+\sum_{m=1}^{R} B_{m}\left(\frac{1}{\omega_{m}}\right) e^{-\alpha_{m} t} \sin \left(\omega_{m} t+\theta_{m}\right) \tag{2}
\end{equation*}
$$

A necessary and sufficient condition for a feedback system to be stable is that all the poles of the system transfer function have negative real parts

Stability and the location of poles

Stable system: Poles are in the left-half plane
Neutral system or marginally stable: Poles are purely imaginary ($j \omega$)
Unstable system: At least one of the poles is in the right-half plane

Marginally stable

Some poles of the closed-loop transfer functions are purely imaginary.
Example: The transfer function

$$
\begin{equation*}
T(s)=\frac{1}{(s+10)\left(s^{2}+16\right)} \tag{3}
\end{equation*}
$$

has the poles $s_{1}=-10, s_{2}=4 j$, $s_{3}=-4 j$.
For $r(t)=1$:

The Routh-Hurwitz criterion

This criterion is a necessary and sufficient condition for stability
Order the coefficient of the characteristic equation

$$
\begin{equation*}
\Delta(s)=q(s)=a_{n} s^{n}+a_{n-1} s^{s-1}+\ldots+a_{1} s+a_{0}=0 \tag{4}
\end{equation*}
$$

Into an array as follows:

s^{n}	a_{n}	a_{n-2}	a_{n-4}
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}
s^{n-2}	b_{n-1}	b_{n-3}	b_{n-5}
s^{n-3}	C_{n-1}	C_{n-3}	C_{n-5}
		:	:
S_{0}	h_{n-1}	V	

The number of roots with positive real pats is equation to the number of changes in sign of the first column.

The Routh-Hurwitz criterion

Step 1: Place the highest order of $q(s)$ on the top-left column from n to 0 .

$$
\begin{array}{|l|llll|}
\hline s^{n} & a_{n} & a_{n-2} & a_{n-4} & \ldots \tag{6}\\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \ldots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \\
s_{0} & h_{n-1} & & & \\
\hline
\end{array}
$$

Step 2: From the second column, the first two rows are the coefficients of

$$
\begin{aligned}
& \Delta(s)=q(s)=a_{n} s^{n}+a_{n-1} s^{s-1}+\ldots+a_{1} s+a_{0}=0 \\
& \begin{array}{l|llll|}
s^{n} & a_{n} & a_{n-2} & a_{n-4} & \ldots \\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \ldots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \ldots
\end{array} \\
& s_{0} \quad h_{n-1}
\end{aligned}
$$

The Routh-Hurwitz criterion

Step 3: Fill out the reminder rows

$$
\begin{array}{lllll}
s^{n} & a_{n} & a_{n-2} & a_{n-4} & \ldots \tag{8}\\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
y_{n} s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \ldots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \ldots
\end{array}
$$

$$
s_{0} \quad h_{n-1}
$$

For the b_{n} coefficients:

$$
\begin{align*}
& b_{n-1}=\frac{-1}{a_{n-1}}\left\|\begin{array}{ll}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right\| \text { Please check. } \tag{9}\\
& b_{n-3}=\frac{-1}{a_{n-1}}\left\|\begin{array}{ll}
a_{n} & a_{n-4} \\
a_{n-1} & a_{n-5}
\end{array}\right\| \tag{10}
\end{align*}
$$

there is a typo

The Routh-Hurwitz criterion

Step 3: Fill out the reminder rows

$$
\begin{align*}
& \begin{array}{lllll}
s^{n} & a_{n} & a_{n-2} & a_{n-4} & \ldots \\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} & \ldots \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} & \ldots \\
\cline { 2 - 5 } & & &
\end{array} \tag{11}\\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& s_{0} \quad h_{n-1} \\
& \text { Those check for } \\
& \text { typal in Ale orngil } \tag{12}
\end{align*}
$$

And so on...

Example of Routh-Hurwitz matrix

$$
q(s)=s^{5}+2 s^{4}+1 s^{3}+4 s^{2}+11 s+10
$$

The Routh-Hurwitz matrix is

Example of Routh-Hurwitz matrix

$$
\left.q(s)=3 s^{5}+s^{4}+2 s^{3}+1 s^{2} \stackrel{x^{\theta S}}{+1}\right)
$$

The Routh-Hurwitz matrix is

$$
b_{n-1}=\frac{-1}{a_{n-1}}\left\|\begin{array}{ll}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right\|
$$

$$
c_{n-1}=\frac{-1}{b_{n-1}}\left\|\begin{array}{ll}
a_{n-1} & a_{n-3} \\
b_{n-1} & a_{n-3}
\end{array}\right\|
$$

The Routh-Hurwitz Criterion

Stability requires all roots of $q(s)$ to have positive real parts.
\rightarrow Count the sign changes in the first column
\rightarrow That is the number of roots in the right half plane

Case 1: All elements in the first column are nonzero

$$
q(s)=a_{2} s+a_{1} s+a_{0}
$$

Thus the system is stable if:

$$
\begin{aligned}
& \text { Is the system is stable if: } \\
& \rightarrow a_{2}>0 \text { and } a_{1}>0 \text {,and } a_{0}>0 . \\
& \text { or More likefey } \\
& \rightarrow a_{2}<0 \text {, and } a_{1}<0 \text {, and } a_{0}<0 \text {. }
\end{aligned}
$$

The Routh-Hurwitz Criterion

Case 2: There is a zero in the first column. Other elements in the row containing the zero are nonzero.

$$
q(s)=s^{5}+2 s^{4}+2 s^{3}+4 s^{2}+11 s+10
$$

Replace the zero in the first column with $\epsilon \rightarrow 0^{+}$, ie. $0<\epsilon \ll 1$
where:

$$
\lim _{\epsilon \rightarrow 0} d_{1}=t \infty
$$

$$
c_{1}=\frac{4 \epsilon-12}{\epsilon}
$$

$$
d_{1}=\frac{6 c_{1}-10 \epsilon}{c_{1}}
$$

Now, make $\epsilon \rightarrow 0^{+}$and evaluate the first column elements signs

The Routh-Hurwitz Criterion

Case 3: There is a zero in the first column and the other elements of the row containing the zero are also zero.

Case 4: Repeated roots of the characteristic equation on the imaginary axis.
What does it mean?
\Rightarrow The characteristic equations has purely imaginary roots

Exercise 45

Find the Routh-Hurwitz matrix for the following closed-loop transfer functions and assess the stability of each system.

$$
\begin{aligned}
& T(s)=\frac{1}{s^{2}+2 s+1} \\
& R(s)=\frac{1+s}{3 s^{3}+s^{2}+2 s+3} \\
& P(s)=\frac{1}{s^{4}+2 s^{3}-100 s-500} \\
& H(s)=\frac{s^{2}+1}{s^{5}+s^{4}+4 s^{3}+24 s^{2}+3 s+63}
\end{aligned}
$$

Exercise 45 - continued

Solution: Use the ratlab suript pastite on B.B.

$$
T(s)=\frac{1}{s^{2}+2 s+1}
$$

Exercise 45 - continued

$$
R(s)=\frac{1+s}{3 s^{3}+s^{2}+2 s+3}
$$

$$
\begin{aligned}
& \text { Solution: Use the Matlab } \\
& \text { script pasted on B.B. } \\
& \hline
\end{aligned}
$$

Exercise 45 - continued

Solution: Use the Matlab script pasted on B.B.

Exercise 45 - continued

$$
H(s)=\frac{s^{2}+1}{s^{5}+s^{4}+4 s^{3}+24 s^{2}+3 s+63}
$$

Try thris on your oun
Solution: Use the Matlab
seript pastod on B.B.

Exercise 46

A closed-loop feedback system is shown in the figure.

For what range of values of the parameters k and p is the system stable ?

Procedure:

\rightarrow Find the closed-loop transfer function
\rightarrow Write the Routh-Hurwitz matrix
\rightarrow Determine the values of p and k that meet the stability condition

Exercise 46 - continued
Step 1 - Find the closed-loop transfer function

$$
\begin{aligned}
\frac{y(s)}{R(s)}= & \frac{k s+2}{s^{2}(s+p)+k s+2} \\
& q(s)=s^{3}+p s^{2}+k s+2 \\
& \text { characteristic equation }
\end{aligned}
$$

Exercise 46 - continued
Step 2 - Find the Routh-Hurwitz matrix

$$
T(s)=\frac{k s+2}{s^{2}(s+p)+k s+2}=\frac{k s+2}{s^{3}+p s^{2}+k s+2}
$$

s^{3}	1	k
s^{2}	p	2
s^{1}	$\frac{K p-2}{P}$	0
s^{0}	2	

Nate: if $K_{p}=2$ the segtern is marginally stable. Why?
fore stability we need

$$
\text { thus }\left\{\begin{array}{l}
p>0 \\
K p>2
\end{array}\right.
$$

$$
\frac{k p-2}{p}>0, p>0
$$

Exercise 47

The linear model of a phase detector can be represented by the diagram shown. It is designed to maintain a zero phase between the input carrier signal and local voltage controller oscillator. We want to minimize th steady-state error for a ramp input.

(a) Determine the maximum gain $k_{a} k$ in order to maintain a stable system.
(b) Find $k k_{a}$ for a steady-state error of 1° for a ramp signal of $100 \mathrm{rad} / \mathrm{s}$.

Exercise 47 - continued
Step 1 - Find the closed-loop characteristic equation.

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{10 K a K(s+10)}{\delta(s+1)(s+100)+10 K k a(s+10)}, q(s)=s^{3}+101 s^{2}+(100+10 K K a) s+100 \mathrm{KKa}
$$

Exercise 47 - continued
Step 2: Find the Routh matrix

$$
q(s)=s^{3}+101 s^{2}+\left(100+10 k k_{a}\right) s+100 k k_{a}=0
$$

$$
\begin{aligned}
& b=\frac{100 \mathrm{KKa}-10(100 \text { tokKa })}{} \begin{array}{c|c}
s^{3} & 1 \\
-101 & 101 \\
s^{2} & b \\
s^{0} & 100 \mathrm{Kka}
\end{array} \\
& \text { for stability: } \\
& b>0 \rightarrow 100+\frac{910}{101} k k a>0 \\
& \text { ard } \\
& k k_{a}>\frac{-100\left(L_{01}\right)}{g 10}
\end{aligned}
$$

Exercise 47 - continued
(c) Find $k k_{a}$ that yield a tracking error of 1° for $r(t)=100 t$

$$
\begin{aligned}
& \begin{array}{l}
e(s)=\lim _{s \rightarrow 0} s(1-T(s)) \frac{100}{s^{2}} \\
=\frac{10 K a K(s+60)}{\delta(s+l)(s+10 \theta)+10 K K a}(s+6 \theta)
\end{array} \\
& e_{s s}=\lim _{s \rightarrow 0} \phi\left(\frac{\phi(s+l)(s+l \theta \theta)+10 k h a t s+l 0)-10 k+l s+10)}{s(s+1)(s+100)+10 k k u(s+l \theta)}\right) \frac{100}{s^{2}} \\
& e_{s s}=\frac{100}{\text { oka }} \quad e_{s s}<1 \\
& \frac{100}{K K a}<L
\end{aligned}
$$

Exercise 48

A wheelchair velocity control system is shown in the diagram.

Determine the maximum gain $k_{1} k_{2} k_{3}$ for a stable system.

Exercise 48 - continued
The closed loop transfer function

$$
\frac{Y(s)}{R(s)}=\frac{K_{1} K_{2} K_{3}}{(s+1)(0.25 s+1)(0.5 s+1)+K_{1} K_{2} K_{3}}
$$

$$
K=K_{1} K_{2} K_{3}
$$

$$
q(s)=0.125 s^{3}+0.875 s^{2}+1.75 s+2+k
$$

Exercise 48 - continued

$$
q(s)=0.125 s^{3}+0.875 s^{2}+1.75 s+1+k
$$

The Rout matrix is

$$
\begin{array}{l|cc:l}
s^{3} & 0.125 & 1.75 & b=\frac{0.125(1+K)-1.75 \times 0.875}{-0.875} \\
s^{2} & 0.875 & 1+K & b=1.60714-0.142857 K \\
s^{1} & b & 0 & \\
s^{0} & 1+K & 0 &
\end{array}
$$

Stability requires that:

$$
\begin{array}{ll}
1+k>0 & b>0 \\
k>-1 & 1.607-0.143 k>0 \\
&
\end{array}
$$

Exercise 49

A teleoperated control system incorporates both a person and a remote machine. In the case of remote operation of a robot, force feedback is useful. The characteristic equation of such a system is

$$
s^{4}+20 s^{3}+k_{1} s^{2}+4 s+k_{2}=0
$$

where k_{i} is a feedback force amplification factor. Determine and plot the region of stability for this system for k_{1} and k_{2}.

Exercise 49 -continued

$$
s^{4}+20 s^{3}+k_{1} s^{2}+4 s+k_{2}=0
$$

The Rout array is

Answer: $\begin{aligned} & K_{2}>0 \\ & K_{1}>0.2\end{aligned} \quad$ and $\quad \frac{20 K_{1}-4-100 K_{2}}{5 K_{1}-1}>0$
combined: $\quad K_{2}<0.2 K_{1}-0.04$

Exercise 49-continued

For stability: $k_{2}>0, k_{1}>0.2$, and $k_{2}<0.2 k_{1}-0.04$

Next class...

- Root-locus method

