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A Closed-Form Matrix Solution for High-Order
Wave Reflection in an Open-Ended Coaxial Line

for Rapid Dielectric Spectroscopy
Hossein Asilian Bidgoli1, Nicola Schieda2, and Carlos Rossa1

Abstract—Permittivity spectroscopy using open-ended coaxial
probes for material characterization has applications in various
fields, including biomedical engineering. The frequency depen-
dent permittivity of a material is extracted from the measured
reflection coefficient through a coaxial probe. Current models
that relate the reflection coefficient to the dielectric properties
of the material struggle to balance accuracy and computational
efficiency, limiting their utility in near real-time applications.

This paper introduces a novel matrix-based closed-form solu-
tion of the reflection coefficient of an open-ended coaxial probe.
The approach combines full-wave analysis with a Taylor series
expansion, leading to a straightforward matrix calculation. By
reformulating the forward problem to decouple the material
properties from the geometric properties of the probe, the
required numerical integral only needs to be calculated once for
each probe geometry. This significantly reduces computational
time while providing similar or greater accuracy than existing
methods. The model has been validated experimentally using two
coaxial probes and four reference liquids, achieving an average
error of 3.15%. Further validation through 9,600 simulations
in Ansys HFSS demonstrated an average error of 2.9%. When
applied to inverse problems for estimating material permittivity,
the model exhibited an average error of 4.35% while being 376
times faster than existing state-of-the-art models, with similar
or enhanced accuracy. These advancements facilitate real-time,
full-wave permittivity spectroscopy, offering substantial benefits
for medical diagnostics and monitoring.

Index Terms—Permittivity spectroscopy; reflection coefficient;
closed-form model; open-ended coaxial probe; full-wave model.

I. INTRODUCTION

PPERMITTIVITY spectroscopy measures the tendency of
a material under test (MUT) to acquire an electric dipole

moment when exposed to an alternating electromagnetic field.
The frequency-dependent complex permittivity of the MUT is
often used to characterise and monitor different materials in
diverse domains encompassing biology [1]–[3], electronics [4],
[5], agriculture [6], [7], civil engineering [8], [9] and more.
In biomedical engineering, permittivity spectroscopy may be
used for cancer detection since the permittivity of cancerous
tissues differ significantly from their healthy counterparts in
a frequency ranging from 0.5 GHz to 10 GHz [10]–[18].
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Instituts de recherche en santé du Canada (subvention no 944486).

In general, cancerous tissues have higher water content than
healthy tissues, which increases its permittivity [19]–[21].

The method of choice for permittivity spectroscopy of
biological tissue uses open-ended coaxial probes [3], [22]. To
estimate the permittivity of the MUT, an electromagnetic wave
is directed through the probe toward the aperture in contact
with the MUT. Upon reaching the material, some of the wave
is reflected back to the source. The magnitude and phase of
the reflected wave are directly tied to the material’s complex
permittivity. The ratio of the amplitude of reflected wave to
the incident wave is known as the reflection coefficient, from
which the permittivity is calculated. However, developing an
accurate model which links the permittivity of the MUT to
the reflection coefficient is a complex task. Current methods
suffer from a trade-off between accuracy and computational
costs.

Admittance models were the first to correlate the measured
reflection coefficient (R0) with the material’s permittivity
by taking into account the propagation of electromagnetic
waves inside the probe and their interaction with the mate-
rial [23]. To improve computational efficiency, these models
were later refined using Taylor series expansions [24], [25].
However, admittance models are not accurate, especially at
higher frequencies, were the effect of higher wave modes
neglected in the model becomes more prominent. In response,
full-wave models have been developed to incorporate these
higher-order modes [26], [27], but they are time-consuming,
requiring repeated numerical evaluation of integrals subjected
to singularities for every measurement. A model that can
simultaneously achieve both high accuracy and computational
efficiency would enable real-time applications of permittivity
spectroscopy, potentially making it a standard diagnostic and
monitoring modality in healthcare.

In this paper, we introduce a novel physics-based model
of the reflection coefficient of an open-ended coaxial probe
using full-wave analysis that works in real-time. To the best
of our knowledge, this is the first closed-form and full-wave
solution in the literature that provides the reflection coefficient
given the MUT permittivity. Some preliminary results related
to this work were presented in [28]. To clearly position our
contribution with respect to the state-of-the-art, in Section II
we begin with an in-depth mathematical review to describe
the electromagnetic field inside the probe and MUT, and the
most comprehensive models of the reflection coefficient that
were introduced in the literature in the last five decades and
discuss their limitations. We then introduce in Section III our
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Fig. 1. (a) Open-ended coaxial probe in contact with a MUT of permittivity
ϵs. The magnitude of the reflected wave depends on the reflection coefficient
Rn. (b) The coaxial probe aperture with cylindrical coordinates ρ and ϕ
expressed in the reference frame xyz located at the centre of the aperture.
a and b are the inner and outer radii of the probe, and ϵc is the relative
permittivity of the dielectric inside the probe, which fills the space between
the inner and outer conductors.

proposed new model. It combines a full-wave analysis with a
Taylor series expansion that reduces the forward problem to
a simple matrix inversion. Our model addresses a crucial gap
in the literature and is expected to:

1) Solve well-known inaccuracies and limitations of single
mode models by considering higher order modes,

2) Improve the accuracy over full-wave methods in certain
scenarios by reducing the dependency on numerical
calculation of infinite integrals, and

3) Significantly reduce the computational time required in
full-wave analysis.

While current fast single-mode models lack accuracy, and
accurate full-wave models are time-consuming, our model
achieves both accuracy and efficiency simultaneously. Its
efficiency becomes particularly evident, and even more ad-
vantageous compared to other full-wave methods when the
model is applied to an inverse problem to extract the medium’s
permittivity. The fast and accurate model is accomplished
by decoupling the material parameters from time-consuming
numerical integrals with singularities, and later reducing the
forward problem to a straightforward matrix calculation.

The model’s performance is evaluated experimentally using
two different coaxial probes immersed in methanol, acetone,
1-propanol, and dimethyl sulfoxide (DMSO) in a frequency
range of 1 GHz to 10 GHz. The model’s accuracy is further
assessed through 9,600 simulations in Ansys HFSS to cover a
broader range of MUT permittivities. The experimental and
simulation results show an average error in estimating the
reflection coefficient of 3.15% and 2.9%, respectively. Finally,
the model is used in an inverse problem to determine the
permittivity of the MUT. The results reveal an average error of
4.35% while providing computational speeds 376 times faster
than existing state-of-the-art full-wave models. This model is
a crucial first step towards full-wave, real-time permittivity
spectroscopy, which has many applications in medicine.

II. LITERATURE REVIEW

Fig. 1 illustrates a coaxial probe opening to a MUT. The
objective is to determine the complex permittivity ϵs of the
MUT from the phase and magnitude of the reflected electro-
magnetic wave, which is measured at other end of the probe by

a vector network analyzer (VNA). The permittivity is therefore
estimated indirectly, meaning that an accurate model linking
the reflection coefficient to the permittivity of the MUT is
required. In this section, we review the most comprehensive
models available in the literature.

The process begins by transmitting an transverse electro-
magnetic (TEM) wave along the coaxial probe toward the
MUT. The TEM wave has an electric and a magnetic field
perpendicular to the direction of propagation and has no field
component parallel to the direction of propagation. Upon
reaching the impedance discontinuity at the aperture, part of
the wave travels further into the MUT and the rest reflects
back to the source through the probe. Along with the reflected
TEM wave, higher-order modes created at the aperture also
reflect back. These higher-order modes have distinct field
patterns and are all evanescent (they decay rapidly as they
propagate in the line). Only the TEM wave travels back to
the source of the coaxial probe. The reflection coefficient,
hereafter denoted by R0, can now be formally defined as the
ratio of the amplitude of the primary mode of the reflected
TEM wave to the transmitted TEM. Thus, to form a model to
extract the permittivity of the MUT, all higher-order modes and
radiated waves must be considered. In the next subsections, the
equations governing the electric and magnetic fields inside the
coaxial probe and radiated from the aperture are presented.

A. Electric and Magnetic Fields Inside the Coaxial Probe

Consider the coaxial transmission line with an outer radius
of b and an inner conductor radius of a from Figure 1. A
reference frame with axes x and y is placed at the centre of
the aperture with the z axis parallel to the line and such that
the line terminates and makes contact with the MUT at z = 0.
The incident TEM has an electric field in the radial direction
(Eρ) and magnetic filed in the angular direction (Hϕ).

Higher-order modes inside a coaxial cable (also known as
waveguide modes) are transverse electric TEmn and trans-
verse magnetic TMmn, each having an extra magnetic and
electric field component, respectively, parallel to the direction
of propagation compared to the TEM wave [29], [30]. TEM
mode is solution to the Laplacian wave equation, while the
TEmn and TMmn modes are solutions to the Helmholtz
wave equations. In the coaxial line, the excitation occurs
via a TEM wave, which lacks angular variation (ϕ in Fig.
1(b)). Consequently, only higher-order modes with no angular
dependence can be excited, specifically the TM0n modes.

The radial electric field Eρ can be expressed as:

Eρ(ρ, z) = A0

[
f0(ρ)e

−γ0z +

∞∑
n=0

Rnfn(ρ)e
γnz

]
(1)

The temporal dependency is dropped for simplicity. In the
expression above, A0 is the amplitude of the primary mode
of the electric field, ρ is the radial distance in cylindrical
coordinate (see Fig. 1), fn(ρ) and γn are the radial functions
and the propagation factor of mode n, respectively, and Rn is
the reflection coefficient of each mode. Of particular interest is
the primary mode reflection coefficient R0 (for n = 0), which
is the only measurable parameter by the VNA.
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The azimuthal magnetic field Hϕ is

Hϕ(ρ, z) = jωϵ0ϵcA0

[
f0(ρ)

γ0
e−γ0z−

∞∑
n=0

Rn
fn(ρ)

γn
eγnz

]
,

(2)
in which ϕ is the azimuth angle of the aperture (as in Fig. 1),
ϵ0 is the vacuum permittivity, ϵc is the constant, frequency-
independent relative permittivity of the dielectric inside the
probe, and ω is the radial frequency.

The radial function of the primary mode (n = 0) is:

f0(ρ) =
N0

ρ
(3)

where the normalization factor N0 is:

N0 = 1/
√

ln(b/a) (4)

The primary mode propagation factor is:

γ0 = j
√
ϵc(ω/c0) (5)

where c0 is the speed of light in vacuum. The radial functions
fn(ρ) of the higher orders are:

fn(ρ) = Nn [J1 (pnρ)Y0 (pna)− Y1 (pnρ) J0 (pna)] , (6)

where Jm and Ym refer to the mth order Bessel functions
of the first and second kinds, respectively. The eigenvalues,
denoted as pn, are the solutions to

Y0(pna)J0(pnb) = J0(pna)Y0(pnb) n > 0. (7)

In (6), the normalization factor Nn of higher order modes is

Nn =
πpn√
2

[
J2
0 (pna)

J2
0 (pnb)

− 1

]1/2
n > 0 (8)

And the higher order propagation factor γn in (1) and (2) can
be defined as:

γn =
√
p2n − ϵc(ω/c0)2 n > 0 (9)

Equations (1) and (2) describe the transmitted and reflected
waves within the coaxial cable, which also radiate through the
aperture towards the MUT. While both electric and magnetic
fields exist inside the MUT, the reflection coefficient model
requires only one of these fields. The next subsection details
the formulation of the radiated magnetic field.

B. Radiated Magnetic Field from the Aperture

The open-end of the coaxial probe radiates into the MUT
on the positive side of the z-axis, as in Fig. 1. The radiated
magnetic filed can be related to the tangential electric field
Eρ(ρ

′, ϕ′) at z = 0 using Huygens’ principle and image
theory. Here, prime denotes the coordinates of the source point.
The detailed analysis of the radiated magnetic field resulting
from the aperture fields is extensively discussed in [29]. Since
there is no geometry variation in the ϕ′ direction, it follows
that Eρ(ρ

′, ϕ′) = Eρ(ρ
′).

Given every point on the aperture as a source point, the total
magnetic field is the integral of all these source points, that
is, from ρ = a to ρ = b and ϕ = 0 to ϕ = 2π, and given as:

Hϕ(ρ, z) =
jk2s

2πωµ0

∫ b

a

∫ 2π

0

Eρ (ρ
′)
e−jksr

r
cosψρ′dψdρ′

(10)
where ψ = ϕ − ϕ′ and r =

√
ρ2 − ρ2 − 2ρρ′ cosψ + z2.

Finally, the MUT wave number ks is a function of its complex
permittivity ϵs:

ks = ω
√
µ0ϵ0ϵs, (11)

and the MUT complex relative permittivity is:

ϵs = ϵ′ − jϵ′′, (12)

where ϵ′ and ϵ′′ are the real and imaginary part of relative
permittivity of the MUT, respectively. All three parameters, ϵs,
ϵ′, and ϵ′′ are frequency-dependent; however, for simplicity,
the explicit notation for frequency is dropped. The waves
inside the coaxial probe and the wave radiated to the MUT
from the aperture can be related by the boundary condition as
is discussed in the following subsection.

C. Boundary Condition Across the Aperture

The boundary conditions must ensure that the tangential
magnetic field of the aperture inside and outside the probe are
continuous. This condition is satisfied by equating (2) and (10)
at z = 0:

jωϵ0ϵcA0

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
2πωµ0

∫ b

a

∫ 2π

0

Eρ (ρ
′)
e−jkr

r
cosψρ′dψdρ′

(13)

In some methods the Somerfeld identity is used to convert
e−jksr

r to be expressed in terms of Bessel functions, then (13)
can be rewritten as:

jωϵ0ϵcA0

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
ωµ0

∫ ∞

0

∫ b

a

Eρ (ρ
′)
J1(ζρ)J1 (ζρ

′) ζ

(ζ2 − k2)1/2
ρ′dρ′dζ

(14)

In the following subsections, various proposed models in the
literature that use the aforementioned equations to determine
R0 based on the permittivity of the MUT are presented.

Having established the mathematical foundation of the EM
wave inside the probe, we can now review the three most com-
mon models that attempt to relate it to the MUT properties.

D. Single-Mode, Admittance and Closed-Form Models

The simplest model, first presented in [23], relates the
normalized admittance ys of the coaxial probe exposed to the
MUT and its reflection coefficient as:

ys =
1−R0

1 +R0
(15)

A common approach for calculating the normalized admittance
of the coaxial probe is to replace the electric field in the right
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side of (14) with its TEM mode, i.e., E(ρ) = A0f0(ρ) [25],
[31]. Then, by multiplying both sides of the resulting equation
by f0(ρ)ρ and integrating them from a to b over ρ, gives:

jωϵ0ϵcA0

[∫ b

a

f0(ρ)
2

γ0
ρdρ−

∞∑
n=0

Rn

∫ b

a

f0(ρ)fn(ρ)

γn
ρdρ

]
=

jk2s
ωµ0

∫ ∞

0

∫ b

a

∫ b

a

A0f0(ρ)f0 (ρ
′)
J1(ζρ)J1 (ζρ

′) ζ

(ζ2 − k2)1/2
ρρ′dρ′dρdζ

(16)
All of the higher order TM0n modes are eliminated as their
integral is zero due orthogonality of radial functions. The final
term for the normalized admittance after a few steps is:

ys =
1−R0

1 +R0
=

jks

(ϵi/ϵ0)
1/2

ln(b/a)

∫ ∞

0

dζ

ζ (ζ2 − k2s)
1/2

· [J0(ζa)− J0(ζb)]
2
.

(17)

The infinite integral above must be solved numerically since
it has no analytical solution. While this method is simpler
compared to the full-wave method (presented in the next
subjection), it compromises accuracy by disregarding higher-
order modes. Additionally, the numerical integration makes
it computationally intensive. However, a closed-form model
can be achieved by multiplying both sides of (13) by f0(ρ)ρ
and replacing the exponential function e−jksr with a Taylor
expansion. By integrating both sides from a to b over ρ, and
after some simple manipulators, we obtain:

ys =
k2s

2πkc ln(b/a)

{[
I1 −

k2sI3
2

+
k4sI5
24

− k6sI7
720

+ · · ·
]

+ j

[
I2ks −

k3sI4
6

+
k5sI6
120

− · · ·
]}

(18)
where

In =

∫ b

a

∫ b

a

∫ 2π

0

rn−2 cosψdψdρdρ′ n = 1, 2, 3 · · · (19)

In this expansion, the In terms are independent of the material
and rely solely on the properties of the probe [3], [32].
Therefore, these coefficients only need to be calculated once,
unlike the previous formulation that requires the calculation
of the integral for every measurement frequency.

Although this model is simple, it fails when the aperture
diameter is close to the operating frequency wavelength. To
address this limitation, the coefficients of the Taylor expansion
may be optimized through analytical calculations [33] or by
model fitting, like we did in [3]. However, modeling errors still
remain since higher modes are neglected. Considering all of
the propagating modes inside the coaxial probe when replacing
Eρ(ρ

′) in (13) or in (14) will lead to better modelling accuracy.
This is presented next.

E. Full-Wave Orthogonal Model

To consider all wave modes, it is sufficient to replace the
electric field Eρ(ρ

′) in (14) with its full-wave form (1). Thus,

(14) can be rewritten as [26], [34]:

jωϵ0ϵc

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
= jωϵ0ϵs

∫ ∞

0

∫ b

a[
f0(ρ

′)+

∞∑
n=0

Rnfn(ρ
′)

]
J1(ζρ)J1 (ζρ

′) ζ

(ζ2 − k2)1/2
ρ′dρ′dζ

(20)

Cancelling out A0 from both sides of the original equation.
This manipulation gives raise to an infinite number of un-
known reflection coefficients Rn, one for each considered
mode (recall that the previous models only had one unknown
parameter, i.e., R0). To solve for the unknown Rn we need
a system of equations, which is usually derived from (21).
One method is to leverage the orthogonality property of the
radial functions fn(ρ). Then, each equation in this system of
equations is obtained by multiplying both sides of (20) by
fm(ρ)ρ, and integrating them from a to b over ρ:

ϵc

∫ b

a

fm(ρ)

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
ρdρ = ϵs

∫ ∞

0

∫ b

a

∫ b

a[
f0(ρ

′)+

∞∑
n=0

Rnfn(ρ
′)

]
J1(ζρ)J1 (ζρ

′) ζ

(ζ2 − k2)1/2
ρρ′dρ′dρdζ

(21)
By substituting the analytical solutions of the integrals over
both ρ and ρ′ results in:

ϵc

∫ b

a

fm(ρ)

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
ρdρ =

ϵs

∫ ∞

0

Dm(ζ)

[
D0(ζ)+

∞∑
n=0

RnDn(ζ)

]
ζ

(ζ2 − k2)1/2
dζ

(22)

where Dn(ζ) is:

D0(ζ) =
1√

ln(b/a)

1

ζ
[J0(ζa)− J0(ζb)] n = 0

Dn(ζ) =
2

π

Nn

pn

1

J0(pnb)

ζ

p2n − ζ2
·

[J0(ζb)J0(pna)− J0(ζa)J0(pnb)] n > 0

(23)

A more comprehensible representation of (22) is, for m = 0:
∞∑

n=0

RnB0n +R0
ϵcα0

ϵsγ0
=
ϵcα0

ϵsγ0
− B00 (24)

and for m > 0:
∞∑

n=0

RnBmn +Rm
ϵcαm

ϵsγm
= −Bm0. (25)

For αm we have:

αm =

∫ b

a

fm(ρ)2ρdρ (26)

with

Bmn =

∫ ∞

0

Dm(ζ)Dn(ζ)ζ

(ζ2 − k2s)
1/2

dζ. (27)

While this model provides better accuracy than single mode
models, it is more time-consuming as it involves N × (N +1)
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numerical integrals for each measurement frequency. A sim-
pler way to construct the system of equations from (20) is
to use the point-matching method, which require N fewer
integrals.

F. Full-Wave Point-Matching Model

The point-matching method builds the system of equations
by equalizing the two sides of (20) over a number of points
having the same radii at the aperture ρ. As per [26] for fast
convergence these points can be determined based on the mean
of the internal and external distributions of matching points,
that is:

ρm = a+
b− a

2

[
i− 1

N − 1
+

2i− 1

2N

]
, i = 1, 2, · · · , N.

(28)
By replacing ρ with ρm in (20), and rearranging the incident
wave terms on the right side of the equation and the reflected
waves terms on the left side, we get:

∞∑
n=0

Rn

[
fn(ρm)

γn
+
ϵs
ϵc

∫ b

a

fn(ρ
′)ρ′dρ′

∫ ∞

0

J1(ζρm)J1 (ζρ
′)ζdζ

(ζ2 − k2)1/2

]

=
f0(ρm)

γ0
− ϵs
ϵc

∫ b

a

f0(ρ
′)ρ′dρ′

∫ ∞

0

J1(ζρm)J1 (ζρ
′) ζdζ

(ζ2 − k2)1/2
(29)

Dividing this equation by its right-hand side yields:

∞∑
n=0

RnWnm = 1, (30)

in which

Wnm =
fn(ρm)/γn + (ϵs/ϵc) In(ρm)

f0(ρm)/γ0 − (ϵs/ϵc) I0(ρm)
(31)

and

In(ρm) =

∫ ∞

0

J1(ζρm)ζ√
ζ2 − k21

·
∫ b

a

fn (ρ
′) J1(ζρ

′)ρ′dρ′dζ . (32)

By integrating over ρ′, we have:

In(ρm) =

∫ ∞

0

J1(ζρm)ζ√
ζ2 − k21

Dn(ζ) dζ (33)

Although this method is simpler than the previous methods,
the integrals for calculating In(ρm)s are subjected to singular-
ities, and they must be computed for every frequency, which
is computationally expensive. Even more time consuming
is the process of determining the permittivity of the MUT
through a resulting iterative inverse problem over the forward
model, making real-time measurements virtually impossible
[35]. Clearly, none of the presented models provide a suitable
balance between accuracy and computational time. Our newly
proposed model bridges this evident gap in the literature by
overcoming limitations. Our model is introduced next.

III. PROPOSED FULL-WAVE, CLOSED-FORM MODEL

To circumvent the numerical integration in the reflection
coefficient equations, we note that the only term in (21) that
depends on the MUT properties is e−jksr on the right hand
side of the equation. The remaining terms are either the known
TEM or TM wave modes, or depend only on the geometry and
permittivity of the probe. To solve for Rn in (21), instead
of using Sommerfeld identity, we begin by replacing the
exponential term with a corresponding Taylor series expansion,
similarly to what has been proposed for TEM-only models
[18], [25], [32]:

e−jkr

r
=

∞∑
p=0

(−jks)prp−1

p!
(34)

This manipulation will lead to several integrals that are solely a
function of the probe geometry, therefore the MUT properties
(ks) can then be taken out of these integrals. It follows that
after the expansion (21) changes to

jωϵ0ϵc

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
2πωµ0

∫ b

a

∫ 2π

0[
f0 (ρ

′)+

∞∑
n=0

Rnfn (ρ
′)

][ ∞∑
p=0

(−jks)prp−1

p!

]
cosψρ′dψdρ′

(35)
Both sides of the equality in (35) are functions of ρ. To
establish a system of equations to solve for Rn and eliminate
the dependency on ρ, we multiply both sides of (35) by fm(ρ)ρ
and integrate over ρ from a to b:

jωϵ0ϵc

∫ b

a

[
fm(ρ)f0(ρ)

γ0
−

∞∑
n=0

Rn
fm(ρ)fn(ρ)

γn

]
dρ =

jk2s
2πωµ0

∫ b

a

∫ b

a

∫ 2π

0

[
fm(ρ)f0 (ρ

′)+

∞∑
n=0

Rnfm(ρ)fn (ρ
′)

]
[ ∞∑
p=0

(−jks)prp−1

p!

]
cosψρ′dψdρ′dρ

(36)
In (36) the orthogonality of Bessel function, i.e.,

∫ b

a

fn(ρ)fm(ρ)ρdρ = 0 if n ̸= m, (37)

entails that only one integral on the left side of (36) is non-
zero. Thus, for m = 0, (36) we obtain:

ϵc
ϵsγ0

(1−R0)

∫ b

a

f20 (ρ)ρ dρ =

1

2π

∫ b

a

∫ b

a

∫ 2π

0

[
(1 +R0)f0 (ρ

′) +

∞∑
n=1

Rnfn (ρ
′)

]
[ ∞∑
p=0

(−jks)prp−1

p!

]
f0(ρ) cosψρ

′dψ dρ′ dρ

(38)
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And for m > 0, we have:

ϵc
ϵsγm

(−Rm)

∫ b

a

f20 (ρ)ρ dρ =

1

2π

∫ b

a

∫ b

a

∫ 2π

0

[
(1 +R0)f0 (ρ

′) +

∞∑
n=1

Rnfn (ρ
′)

]
[ ∞∑
p=0

(−jks)prp−1

p!

]
fm(ρ)cosψρρ′dψ dρ′ dρ

(39)

After applying the Taylor series expansion to these equa-
tions, ks can be pulled out of the integrals, leaving only the
αm integrals on the left side of (38) and (39), and βmnp on
the right side of these equations. Then, αm is:

αm =

∫ b

a

f2m(ρ)ρdρ (40)

And for βmnp:

βmnp=
1

2π

∫ b

a

∫ b

a

∫ 2π

0

rp−1

p!
fn (ρ

′)fm(ρ)ρ′ρ cosψdψdρ′dρ

(41)
Replacing the integrals with these terms, (38) and (39) may
be rewritten as a double summations, i.e.,

(1−R0)
ϵc
ϵsγ0

α0 = (1 +R0)

∞∑
p=0

(−jks)pβ00p+

∞∑
n=1

Rn

∞∑
p=0

(−jks)pβ0np
(42)

And for m > 0:

(−Rm)
ϵc
ϵsγm

αm = (1 +R0)

∞∑
p=0

(−jks)pβm0p+

∞∑
n=1

Rn

∞∑
p=0

(−jks)pβmnp

(43)

Now, let us rearrange these equations with the reflection
coefficients term on the left side, and the constant values are
on the right side of the equation:
∞∑

n=0

Rn

∞∑
p=0

(−jks)pβ0np+R0
ϵcα0

ϵsγ0
=
ϵcα0

ϵsγ0
−

∞∑
p=0

(−jks)pβ00p

(44)
∞∑

n=0

Rn

∞∑
p=0

(−jks)pβmnp +Rm
ϵcαm

ϵsγm
= −

∞∑
p=0

(−jks)pβm0p

(45)
Finally, these equations can be expressed as a simple matrix
multiplication:

AR = B (46)

where A and B are given in (17) and (18). In these matrices
the sums are defined from p = 0 to p→ ∞, i.e.,

∑∞
p=0 →

∑
.

These limits are omitted for simplicity. Finally, R0 is simply
found as the first cell of the vector R = (A−1)B.

Unlike the previously reported models, all coefficients in
A must be calculated only once for each probe, as they are
independent from the MUT properties. Our newly proposed
model simplifies to a simple matrix operation, which is inher-
ently much faster, especially with modern CPUs and GPUs
optimized for vector calculation.

Fig. 2. (a) Measurement setup used for model validation with a coaxial probe
placed in the MUT and connected to vector network analyzer. (b) Full-wave
simulation of the same open-ended coaxial probe (red) inside the MUT (blue
cube) in Ansys.

IV. MODEL VALIDATION

In this section, the proposed reflection coefficient model
is validated experimentally and through simulations. Then,
we employ the model in a inverse problem to estimate the
MUT permittivity. Modelling error and processing time are
then evaluated and compared against the single-mode closed-
form model, and the full-wave point-matching model.

We consider two standard 50 Ω coaxial cables, hereafter
referred to as the thick and slim probes. The thick probe has a
relative permittivity of ϵc = 2.08 with inner and outer radii of
a = 0.46 mm and b = 1.5 mm, respectively. The slim probe
has a relative permittivity of ϵc = 1.8 with inner and outer radii
of a = 0.14 mm and b = 0.43 mm, respectively. The number
of modes and the degree of the Taylor expansion are set to
M = N = 5 and P = 20, respectively. This configuration
results in a total of 500 βmnp coefficients (41), and 5 αm

coefficients in (40).
The experimental setup is depicted in Fig. 2(a). One end of

the probe is connected to a vector network analyzer (VNA)
(model R140B from Copper Mountain) while the aperture is
submerged in four different MUT, one at a time, i.e., methanol,
acetone, 1-Propanol, dimethyl sulfoxide (DMSO), all of which
have well-known permittivity [36]. The calibration procedure
outlined in [3] is used in this study, with water, ethanol, and
air serving as calibration materials. The measurement is done
at room temperature (25◦C).

Note that measurements are subject to uncertainties related
to the parameters of the probe (geometric parameters and
permittivity) , as well as measurement variables (frequency
and temperature), all of which contribute to measurement error
[34]. To minimize these variations, we used the average of 100
measurements, ensuring more accurate and consistent results.
Additionally, we used standard and reference materials with a
purity of 99% to improve precision.

The reflection coefficient is measured through the VNA
between 1 GHz and 10 GHz at intervals of 20 MHz, resulting
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A =



∑
(−jks)pβ00p + ϵc

ϵsγ0
α0

∑
(−jks)pβ01p · · ·

∑
(−jks)pβ0Np∑

(−jks)pβ10p
∑

(−jks)pβ11p + ϵc
ϵsγ1

α1 · · ·
∑

(−jks)pβ1Np

...
...

. . .
...∑

(−jks)pβN0p

∑
(−jks)pβN1p · · ·

∑
(−jks)pβNNp +

ϵc
ϵsγN

αN


(17)

B =
[

ϵc
ϵsγ0

α0−
∑

(−jks)pβ00p −
∑

(−jks)pβ10p · · · −
∑

(−jks)pβN0p

]T
(18)
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Fig. 3. Estimated reflection coefficient using the proposed model versus the measured reflection coefficient for (a) methanol, (b) acetone, (c) dimethyl
sulfoxide (DMSO), and (d) 1-propanol over the frequency range of 1 GHz to 10 GHz. The first and second row show the results for the thick and slim probes,
respectively. The third row shows the relative modelling error for the proposed full-wave closed-form model (FM-CF), along with the errors observed with
the single-mode closed-form model (SM-CF) and the full-wave point-matching model (FW-PM).

in a total of 451 points for each MUT, and compared against
the model predictions. All models presented earlier were
implemented in Python (version 3.11) on a system with an
Intel Core i7 CPU and 16 GB RAM.

The measured and model-estimated reflection coefficients
for both probes and all four MUT are shown in the polar
plots in Fig. 3. The first and second row correspond to the thick
and slim probes, respectively. The third row shows the relative
error between the measured and estimated reflection coefficient
magnitude for the proposed full-wave closed-form model (FW
CF), the single-mode closed-form (SM CF), and the full-
wave point-matching (FW PM) models for both probes. Each
column corresponds to a different MUT. The proposed model
is in good agreement with the experimental results, with an
error below 7%. In contrast, the single-mode closed-form
model (SM CF) has a significantly higher error, reaching
nearly 20% for the thick probe. The full-wave point-matching
model (FW PM) and the proposed full-wave closed-form
model (FW CF) show statically similar errors.

The average relative error and the processing time for
each model are summarized in the top half of Table I. The
processing time refers to the total duration required for the
model to estimate the reflection coefficient of a material
across 451 frequency points. The single-mode model shows
the highest maximum average error, reaching 17.17% for the
thick probe, while its performance is somewhat better for the
slim probe, with a maximum error of 11.2%. It has the lowest
average processing time of all models, not exceeding 2.69
seconds.

As expected, the full-wave point-matching model achieves
better accuracy than the single mode model, with a maximum
average error of 6.09% and 2.8% for the thick and slim
probes, respectively. However, the increased accuracy comes at
a cost of increased processing time, with a maximum of 144.3
seconds for the thick probe and 66.45 for the slim probe.

The proposed full-wave closed-form model maintains a
similar level of accuracy to the point-matching model, with
a maximum average error of 6.36% and 2.85% for the thick
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TABLE I
COMPARISON OF AVERAGE RELATIVE MODELLING ERROR AND ELAPSED TIME FOR EACH MODEL - EXPERIMENTAL AND SIMULATED RESULTS

Thick Probe Slim Probe
Model Parameter Methanol Acetone DMSO Propanol Methanol Acetone DMSO Propanol

E
xp

er
im

en
ta

l Single-Mode Closed-Form Error (%) 14.1 14.0 17.2 6.68 4.04 8.59 11.2 2.03

Time (s) 2.41 2.31 2.31 2.38 2.51 2.37 2.69 2.47

Full-Wave Point-Matching Error (%) 6.09 5.07 3.58 3.14 2.10 2.80 2.71 0.81

Time (s) 132 144 141 139 32.5 57.1 65.1 66.4

Proposed model Error (%) 6.36 4.52 3.23 2.64 2.11 2.85 2.66 0.84

Time (s) 2.65 2.58 2.52 2.54 3.00 2.69 2.64 2.58

Thick Probe Slim Probe
Model Parameter 1 GHz 5 GHz 10 GHz 15 GHz 1 GHz 5 GHz 10 GHz 15 GHz

Si
m

ul
at

io
n Single-Mode Closed-Form Error (%) 7.02 9.15 9.72 7.98 2.09 8.73 9.31 9.65

Time (s) 2.71 2.43 2.30 2.19 2.16 4.64 2.18 2.07

Full-Wave Point-Matching Error (%) 2.49 2.80 0.71 3.14 1.54 4.25 4.19 2.54

Time (s) 248 265 181 174 58.8 121 152 101

Proposed model Error (%) 3.54 3.95 1.18 2.25 1.43 3.86 3.78 2.18

Time (s) 2.36 3.98 2.25 2.27 2.16 2.25 5.18 2.27

and slim probes, respectively. Yet, it does so with a processing
time much closer to that of the single-mode closed-form
model, with a maximum of 3.00 seconds, demonstrating a
significant reduction in computational demand. This indicates
that the proposed model not only improves efficiency but
also maintains a level of accuracy comparable to the point-
matching model, while significantly outperforming the single-
mode closed-form model, especially for the thick probe.

A. Simulation Validation

To further validate the model across a wider range of
MUT properties, simulations were conducted using Ansys
HFSS. Fig. 2 (b) shows the simulation environment, where the
blue cube represents the MUT. The MUT is symmetric cube
measuring 2 cm of each side, which is significantly larger than
the penetration depth of the probes. The MUT boundary con-
dition was set to ”radiation”, preventing reflections from the
boundaries that could interfere with the results. To improve the
accuracy of the simulation, mesh refinement was performed
to reach a convergence threshold of 0.01, which represents
the allowable difference in S-parameters between successive
mesh iterations. To validate the numerical Ansys HFSS model,
simulation results where the 4 mentioned reference materials
were used as the MUT were compared against the results
obtained from the most accurate analytical model, i.e., the
full-wave orthogonal model. An average error of less than 0.76
was observed across all materials over the frequency range of
1 GHz to 15 GHz, with increments of 20 MHz.

The real part of the relative permittivity of the MUT was
swept from ϵ′ = 1 to ϵ′ = 100, and the imaginary part was
swept from ϵ′′ = 0 to ϵ′′ = 100, both with increments of 5.
This process was repeated at 1 GHz, 5 GHz, 10 GHz, and 15
GHz for both the thick and slim probes.

The model-estimated reflection coefficient for the the pro-
posed model, the single-mode closed-form model, and the
full-wave point-matching model are shown in polar plots of
Fig. 4 for both probes. Each point on a plot corresponds

to a calculated reflection coefficient for a particular model
and for a unique combination of MUT complex permittivity,
spanning the range provided earlier. Each column corresponds
to a different frequency. The colour bar on the left indicates
the relative error between the model and the simulation. As
expected, the highest error, of around 20%, arises from the
single-mode model. The proposed model and the full-wave
point-matching model show similar errors, with a maximum of
approximately 6%. The single-mode model shows its highest
error when the reflection coefficient is close to zero, and
the error significantly increases with frequency, highlighting
the importance of considering higher-order modes. This phe-
nomenon is also visible in the experimental results but much
less pronounced in the two full-wave models.

The average relative error between each model and the
simulation results, along with their computational time for
a sweep of 441 material points at a single frequency, are
further summarized in the bottom half of Table I. The single-
mode model has the highest average error (9.72% with the
thick probe at 10 GHz) and a peak error of 20%. In con-
trast, the proposed model and the full-wave point-matching
model show similar accuracy across all simulated scenarios.
Notably, the proposed model outperforms the point-matching
model at 15 GHz, where it achieves a lower error for both
probes. This is due to the fact that at higher frequencies the
integrals in the point-matching model become more intensive
to solve, increasing the level of approximation in the numerical
calculations. Despite this, the proposed model maintains its
accuracy while significantly reducing the processing time, with
a maximum of 5.18 seconds, making it about 50 times faster
than the point-matching model. These results underscore the
advantage of the proposed model, offering the same level
of precision as the point-matching model while dramatically
reducing computational demand.
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Fig. 4. Simulation results polar plots. Each point on the plot represents a combination of relative permittivity, with the real part varying from ϵ′ = 1 to
ϵ′ = 100 and the imaginary part varying from ϵ′′ = 0 to ϵ′′ = 100 in increments of 5. The colour of each point indicates the error between the simulated
and model-predicted reflection coefficient. Each column corresponds to a different frequency (1 GHz, 5 GHz, 10 GHz, or 15 GHz). The top three panels
correspond the thick probe and the bottom 3 panel to the slim probe. Each row corresponds to a specific model, i.e., the single-mode closed-form model (CM
CF), the full-wave point-matching model (FW PM), and the proposed full-wave closed-form model (FW CF).

B. Inverse Problem Validation

In the previous subsection, the model was used to calculate
the reflection coefficient for a given complex permittivity of
the MUT. To further validate it, we apply the model to an
inverse problem, where the objective is to extract the MUT
permittivity from the measured reflection coefficient. To this
end we used the same MUT as in the previous experiments,
for all of which the frequency dependent permittivity is well-
documented. For solving the inverse problem, we follow the
procedure explained in [35], [37] and use the Newton-Raphson
algorithm to iteratively extract the permittivity of the MUT
from the estimated reflection coefficient. From our past work
in [35], 10 iterations are sufficient.

The first and second row of Fig. 5 show the real and the
imaginary component of the permittivity calculated using the
proposed model for each MUT as a function of frequency
(solid line). These results are compared against the corre-

sponding Debye model (dashed line) [36]. The third row
shows the error between the magnitude of the model-estimated
permittivity and the Debye ground truth. The left column
displays the results for the thick probe, while the right column
shows the results for the slim probe.

The same inverse problem was applied to the single-mode
and full-wave point-matching models. The model estimation
error and processing time for all models are summarized in
Table II. The patterns observed in the earlier experimental
and simulation results are also visible here, but with some
notable differences. Specifically, the single-mode model has a
significantly higher average error of 20.02%. In contrast, the
proposed model achieved a maximum average error of 7%,
while the full-wave point-matching model reaches 8.28%.

While our proposed model and the point-matching model
show similar accuracy, a substantial difference can again be
seen in the processing time. The proposed model required
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Fig. 5. Model-estimated versus reference permittivity of methanol, acetone,
dimethyl sulfoxide (DMSO), 1-propanol, ethanol, and water. The permittivity
is extracted from the measured reflection coefficient using thick and slim
probes with the inverse problem approach. The first and second row display
the real and imaginary parts of the measured permittivity (solid lines),
respectively. The Debye model (D) is shown with dashed lines for comparison.
The third row is error between the estimated permittivity using the proposed
model and the Debye ground truth. The error for ethanol and water shows a
smooth or constant trend over frequency, as they are the calibration materials
in the measurement.

only 14.21 seconds at most per frequency sweep for each
material, whereas the point-matching model took up to 5,335
seconds (approximately 1 hour and 19 minutes) to perform
the same calculation. In other words, the proposed model
is approximately 376 times faster than the full-wave point-
matching model in solving inverse problems while delivering
similar or even better accuracy in some instances. Addition-
ally, as the proposed model employs a matrix-based method,
well-developed techniques for vectorized calculations can be
utilized to further reduce this processing time to just a few sec-
onds. This drastic reduction in processing time is crucial, par-
ticularly since most applications in permittivity spectroscopy
involve an inverse problem that computes permittivity across a
frequency band. The ability of the proposed model to achieve
faster processing times without compromising accuracy makes
it highly beneficial in demanding scenarios for practical, near-
to-real-time applications where computational resources and
time constraints are critical.

V. CONCLUSION

This paper introduces a novel full-wave closed-form model
for the reflection coefficient of an open-ended coaxial probe,

representing a significant advancement over existing modelling
approaches. Traditional models often struggle with a trade-
off between accuracy and computational efficiency. Some
focus exclusively on primary modes, neglecting higher-order
effects and thereby compromising accuracy. Meanwhile, full-
wave models generally involve complex and lengthy numerical
integral calculations for each measurement, a process made
even more cumbersome by singularities.

The proposed model addresses these issues effectively. By
reformulating the forward model as a simple matrix inversion,
where the matrix coefficients are independent of the MUT
properties, we eliminate the need for repetitive numerical inte-
gration. This approach not only maintains the accuracy of full-
wave models but also enables efficient vectorized calculations,
which is particularly advantageous for solving the inverse
problem and extract the MUT permittivity from the reflection
coefficient. The model’s computational speed is notably faster,
with the proposed model being approximately 50 times faster
in direct problems and 376 times faster in inverse problems
than traditional full-wave point-matching models, while retain-
ing comparable accuracy. This efficiency is crucial in real-time
applications, such as biomedical spectroscopy, where quick
and precise data acquisition is essential.

In summary, the presented full-wave closed-form model
harmonizes accuracy with exceptional efficiency, overcoming
the limitations of previous methods. Its capability to deliver
both precise and rapid results makes it a valuable tool for
applications requiring near to real-time data acquisition. A
potential improvement to the proposed model is to quantify the
impact of measurement uncertainty in the estimated reflection
coefficient and permittivity of the MUT. These uncertainties
include variations in the probe’s diameter, inaccuracies in the
VNA, and the dielectric properties of the reference liquids.
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