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Abstract—Permittivity spectroscopy can discern a material’s
composition based on its response to electromagnetic field. The
predominant method employed for permittivity spectroscopy
relies on measuring the reflection coefficient of an open-ended
coaxial probe immersed in the material under test. While several
physics-based models exist to describe the observed reflection
coefficient as a function of the material properties, they assume
a single, homogeneous layer. However, most applications, par-
ticularly in biomedical engineering, often involve heterogeneous
media composed of layers of different permittivities.

This paper addresses a gap in the literature and introduces
a new model designed for accurately estimating the reflection
coefficient of two-layer media using open-ended coaxial probe.
Adapting a full-wave model initially developed for determining
the reflection coefficient of homogeneous media, the proposed
model incorporates the influence of second layer by expanding the
spherical waves generated by the probe into planar waves using
Bessel-based formulation. The proposed method is validated
experimentally in different scenarios within a frequency range
of 1 GHz to 5 GHz. The experimental results indicate that the
proposed model can predict the reflection coefficient of the media
with an error no higher than 5%, while the average error in the
extracted permittivity from the inverse problem is 1.08%.

Index Terms—Permittivity spectroscopy, open-ended coaxial
probe, modelling, reflection coefficient, multilayer medium.

I. INTRODUCTION

ERMITTIVITY spectroscopy can characterize a

medium’s composition from its polarisability when
subjected to an alternating electromagnetic field (EMF) of
varying frequency. Permittivity spectroscopy has applications
across a wide spectrum of fields, especially in biomedical
engineering, where the ability to distinguish between
cancerous and healthy tissues using permittivity measurements
has gained a lot of attention recently [1]-[4].

The most commonly employed method for permittivity
spectroscopy involves transmission of a transverse electro-
magnetic (TEM) wave into the medium through an open-
ended coaxial probe. Upon the wave’s arrival at the aperture, a
portion of it is immediately reflected back toward the source at
the end of the probe due to the impedance mismatch between
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the transmission line and the medium. The remaining portion
of the wave propagates through the medium.

In addition to the TEM mode, coaxial lines can support
higher-order modes, such as transverse electric (TE) and
transverse magnetic (TM) modes. These modes have more
complex field distributions propagating in the radial and axial
directions within the coaxial structure. When the primary
mode is incident upon the probe’s aperture, these higher-order
modes are also excited. However, these modes are evanescent,
meaning they do not extend to the distal end of the coaxial
probe and cannot be experimentally measured.

The ratio of the amplitude of the reflected wave to the
transmitted wave is the so-called reflection coefficient of the
medium, which increases with the ratio of the impedance
mismatch. By analyzing the observed reflection coefficient,
the permittivity of the medium can be inferred. The measured
reflection coefficient represents the reflection of the primary
mode. However, to extract the permittivity with sufficient
accuracy, the model must account for the reflection coefficients
of all modes when striving for better measurement accuracy
[S1-9].

Various approaches have been proposed to link the reflection
coefficient, measured with a vector network analyser (VNA),
to the material’s permittivity. One common method is Lumped
equivalent circuit [10]-[13]. The lumped circuit represents the
impedance terminating the coaxial line, which depends on the
permittivity of the material. The circuit commonly includes
a capacitance and a conductance to represent the fringing
field and the radiation into the material, respectively [14].
While straightforward, this method offers limited accuracy.
As mentioned, the aperture fields can be represented as the
summation of the TEM mode and a series of TM modes. In
this technique, only TEM mode is modelled by the circuit
elements [15]. Consequently, it is only applicable to low value
of frequency and permittivity ranges.

Various admittance models have also been proposed. The
models formulations is derived by equating the magnetic
fields inside and outside of the coaxial probe at the aperture
[16]. These models cover a wider range of frequency and
permittivity as are developed by the analytical solution of the
coaxial probe [17]. However, as they only treated the TEM
modes and not higher order ones, their accuracy might still be
limited to materials having a high permittivity value or when
using probes with small diameters. By employing a quasi-
static approximation of these admittance models, some authors
proposed a closed form solution [18]-[20]. While closed form
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solutions have a lower accuracy than integral form admittance
models, their computational complexity is much lower.

In contrast, full-wave methods consider both the TEM
as well as higher order TM modes by equating more than
one magnetic modes at the aperture through a system of
equations [21]. While they deliver significantly better accuracy
compared to equivalent circuit methods and encompass a wider
range of frequencies and permittivity values, they hinge on
the fundamental assumption that the probe interfaces with a
single-layered, homogeneous medium.

Modelling the reflection coefficient of an open-ended trans-
mission line in a heterogeneous medium has received limited
attention and still presents a particular challenge. In fact, many
applications of permittivity spectroscopy deal with multilay-
ered media (e.g., biomedical tissue). Still, most studies neglect
the impact of additional layers or a thin layer in between the
probe’s tip and the target material [5], [22]. For example,
several studies have investigated the minimum thickness of
a material layer required to maintain model accuracy. This is
determined by placing the probe’s aperture in the first layer of
a 2-layer medium and monitoring the changes in the extracted
permittivity as the thickness of the first layer is changed.
The consensus of these studies is that the minimum thickness
of the first layer must be at least the same as the probe’s
diameter. This way, the second layer has a negligible influence
in the observed reflection coefficient. However, if this ideal
experimental condition cannot be maintained, the model loses
its accuracy and validity. Only a limited number of studies
have tackled the issue of multilayered media analytically
[23]-[27]. Specifically, [23] takes into account the excitation
of different wave modes, i.e., surface, radiative, and radial
guided waves, in the layered media to accurately determine
the electromagnetic properties of the material over a wide
frequency band. However, as it focuses on measuring both
the permittivity and permeability of a material, it requires
two sets of measurements. In [24] an impedance model of
the coaxial line inside a two-layer material is proposed but
it ignores the effect of higher order modes. [25] presents a
technique to model the reflection coefficient of thin materials
by considering only the fundamental coaxial mode, however
the experimental measurements also indicate that this tech-
nique cannot accurately determine the loss factors of low-
loss dielectric materials and, at relatively high frequencies, a
full-wave model is needed for high-permittivity measurements.
Furthermore, it is only applicable when the material is backed
by a short-circuit termination.

Another approach involves expanding on the boundary
condition equation at the aperture of the probe by leveraging
the orthogonality property of the Bessel function [27]. The
result of this manipulation is a system of equations that is
used to solve for the reflection coefficients of /N modes.
However, this method requires the calculation of N(N + 1)
infinite integrals for each measurement point, making it time-
consuming. Given the demand for accurate and real-time
measurements in certain applications, a faster model would
be more suitable but handling layered media remains an area
that requires further research.

This paper introduces a simplified mathematical model to

determine the reflection coefficient of two-layer media using
an open-ended coaxial probe. The proposed model is based on
a full wave method originally developed for single-layer media
with adjustments made to deal with multi-layer media. This
involves accounting for the reflection of the radiated waves
back into the probe from the second layer. The waves radiated
from the probe are spherical waves, making the calculation
of the reflection from the interface complicated. To address
this, we employ a Bessel-based formulation to transform the
radial waves into planar waves. This facilitates analysis of
wave interference with the second layer and the wave reflection
happening between the probe and the interface. Since the full
wave method includes all the existing modes within the coaxial
probe, the point matching method is then used to solve a
system of equations from which the reflection coefficient is
calculated. Unlike previous methods, the use of point matching
method is new for multi-layer media and results in a system
of equations that requires /N fewer infinite integrals compared
to [27]. The model is validated in two different experimental
scenarios in a frequency range of 1 GHz to 5 GHz. The results
show that the model can predict the reflection coefficient of
2-layer media with an error that does not exceed 5%. In a
second set of experiments, it is shown that the model can also
accurately determine the distance between the probe’s aperture
and the interface between the tissue layer with an average
error of 4%. The measured reflection coefficient has also
been utilized in an inverse problem to extract the permittivity
of the first layer using the proposed two-layer model. This
yields results with an average error of less than 1.08% across
frequency spectrum. Comparing these results with the results
of single layer model, which demonstrates errors of 32.6%
or higher at the same distances highlights the significant
improvement in accuracy.

The paper is structured as follows: Section II offers a
comprehensive overview of the single-layer model. Section III
outlines the contribution made to the single-layer model and
how it is adapted to multi-layered media. Section IV presents
the point-matching approach. Section V conducts experimental
validation of the model, comprising two scenarios totaling
1608 measurement points, divided into two subsections. The
first subsection compares model results with the measured
reflection coefficient, while the second subsection applies
measured results in two inverse problems: distance extraction
and permittivity extraction. Conclusions and recommendations
for potential applications of the proposed model follow in the
subsequent section.

II. REFLECTION COEFFICIENT MODEL OF COAXIAL
PROBE IN A SINGLE-LAYER MEDIUM

Fig. 1(a) illustrates a coaxial probe having an aperture in
contact with a material of permittivity €,,;. Adjacent to the
first material, at a distance of ¢; from the probe, is a second
material, which has permittivity €,,o and extends infinitely
along the z-axis. Extensive research has addressed the forward
problem, that is, to calculate the reflection coefficient of the
probe in the absence of the second layer while considering that
the first layer extends indefinitely along the z-axis [21], [28],



[29]. However, in order to determine the reflection coefficient
of the coaxial probe in a multilayered medium, as in Fig.
1(a), it is essential to revisit and expand upon the single-layer
problem.

The configuration shown in Fig. 1(a) in the absence of the
second layer can be divided into two regions: the left side
of the zy-plane (negative z-axis), where the coaxial probe is
located, and the right side of the xy-plane, where the material
under test (MUT) is positioned. The wave propagation inside
and outside the coaxial probe is best explained using cylin-
drical coordinates, as illustrated in Fig. 1(b). The coordinate
system’s origin is located at the center of the coaxial aperture,
and the radial distance and azimuth angle are denoted by p
and ¢, respectively.

Consider that the coaxial probe is excited with a transverse
electromagnetic (TEM) wave. The propagation of this wave
along the +z direction is given by e~7°%, where 7y is the
propagation factor. The relative intensity of the wave at any
point in the transverse plane can be represented by the radial
function fo(p); the intensity is independent of ¢ since the
TEM is symmetric about z. When the wave reaches the probe’s
aperture at z = 0, a portion of it is reflected back from the
probe/material interface at a rate that depends on the reflection
coefficient, denoted by Ry € C.

Additionally, besides the primary TEM mode, higher-order
modes are created and reflected back at the aperture. These
higher-order modes are exclusively transverse magnetic (TM)
modes, due to rotational symmetry [28]. The propagation fac-
tor and radial function of these higher-order modes are denoted
by v, and f,(p), respectively. The reflection coefficient of a
mode of order n, denoted R,, € C, represents the ratio of the
amplitude of the reflected transverse electric field of mode n
to the incident electric field.

Apart from the reflected wave, the aperture radiates the
remaining portion of the TEM further into the medium. In
this context, our focus is to determine the reflection coeffi-
cient Ry associated with the non-evanescent dominant mode,
which is the sole mode that can be measured experimentally.
Consequently, Ry is determined by satisfying the boundary
condition at z = 0, where the transverse electromagnetic field
inside the probe equates to the radiated magnetic field outside
of the probe. The equations for these fields within and outside
of the probe will be derived in the next subsections.

A. Transverse Electric and Magnetic Fields inside the Probe

The total incident and reflected transverse electric fields
E,(p, z) inside the coaxial cable can be expressed as:

Ep(p,2) = Ao | fo(p)e % + 3 Rufulp)e™*|, (D)

n=0

where the subscript p denotes radial direction of the transverse
electric field, and Aq is the amplitude of the primary mode of
the electric field. For simplicity, the temporal dependence is
dropped. In (1), and in the following equation, the first term
represents the incident wave, while the summation represents
the total reflected wave.

Fig. 1. (a) Open-ended coaxial probe in contact with layer 1 having
permittivity €,,1 and at a distance ¢; from layer 2 having permittivity €,,2.
The probe’s reflection coefficients are denoted by R, and the differential
reflection coefficient from the interface between layers 1 and 2 is R¢. (b)
Perspective view of the coaxial probe aperture in cylindrical coordinates p,
¢, and z direction with origin at the centre of the aperture. a and b are the
inner and outer radii of the probe. (c) The probe aperture is divided into N
discrete sections, with the middle of each section denoted as p,.

The total magnetic field Hy(p, z) inside the probe is:

H‘b(ﬂa Z) = jW€0€cA0 Me*’yoz - Z RnMeynz
Yo n—0 Tn
2)

where the subscript ¢ denotes the magnetic field in the
azimuthal direction, w is the radial frequency, €. is the relative
permittivity of the dielectric inside the probe, and ¢; is the
vacuum permittivity.

For the primary mode, the radial function is defined as

folp) = —, (3)
where the normalization factor Ny is

No =1/v/In(b/a) “

In the above, a and b are the inner and outer radii of the probe,
respectively, as shown in Fig. 1(b). The propagation factor of
the primary mode is:

Yo = Jv/ec(w/co) (5)

For higher order modes, f,,(p) can be calculated as

Jn(p) = Nu [J1 (Pnp) Yo (Pna) — Y1 (pnp) Jo (pna)], (6)

where J,,, and Y,,, denote the Bessel functions of the first and
second kind, respectively, with an order of m. The eigenvalues,
represented as p,,, are the roots of

Yo(pna)Jo(pnb) = Jo(prna)Yo(pnb) n > 0. @)



In (6), the normalization factor N,, of higher order modes is
1/2
_ T [J(%(pna) _1} S
" V2 LG (pab)

Now, the propagation factor ,, in (1) and (2) can be defined
as:

®)

Tn = VD2 —€(w/cp)? n>0 )

This equation above reveals that higher-order modes in (2)
are evanescent inside the probe (2 < 0), as their propagation
factors ~,, are real positive values assuming a lossless coaxial
line. In other words, none of the reflected waves with orders
higher than n = 0 reaches the other side of the probe. Only
the dominant mode (n = 0) propagates along the z-axis, as its
propagation factor in (5) is purely imaginary. Therefore, the
primary mode is the only measurable reflected wave.

Now that the equations for the fields inside the coaxial
cable are defined, the subsequent subsection will present the
equations for the radiated fields outside of the probe.

B. Radiated Magnetic Field Outside of the Probe

The open-ended coaxial probe can be regarded as an aper-
ture radiating into a medium on the positive side of the z-axis,
as in Fig. 1(a) and (b). The radiated magnetic can be related to
the tangential electric field E,(p’, ¢) at z = 0 at the aperture.
Hereafter, prime denotes the coordinates of the source point.
Since there is no geometry variation in the ¢’ direction, it
follows that E,(p’,¢') = E,(p’).

The total magnetic field is the integral of all transverse
magnetic fields over the aperture, that is, from p =a to p =5
and ¢ = 0 to ¢ = 2m. The detailed analysis of the radiated
magnetic field resulting from the aperture fields is extensively
discussed in [28] and given as:

ij b 21 e—jk‘,?"
27rwlu / E, (p") p’dp’/ ——cos Pdap
0 Ja 0 (10)

where k1 = \/emn1(w/cp) is the wavenumber of the material,
Y =¢—¢ and r = \/p% — p2 — 2pplcostp + 22.

As mentioned earlier, this paper expands upon the method
presented in [21] to accommodate layered materials, which
requires calculating the reflection of the electric and magnetic
fields radiated from other layers. However, determining the
reflection from a flat interface using the formulation posed
in (10) is not straightforward. This is due to the integration
over magnetic fields propagating along the radius of a sphere,
with the source points (p’, ¢’) as their centres. This introduces
complications when the incident wave reaches the flat surface
of the second material obliquely.

Instead of computing the magnetic field Hy(p,z) by in-
tegrating of fields radiating in r direction, as in (10), we
propose to use the Sommerfeld identity [28]. This formulation
allows the magnetic field to be expressed as an integration of
Bessel functions propagating along the z-axis rather than along
the r direction. This modified approach enables the model
to consider the reflection from a flat interface with normal
incidence. Further discussion on this topic will be provided
later.

H¢(p, Z) =

Consequently, with the proposed new formulation the re-
sulting radiated magnetic field from the aperture, using the
Sommerfeld identity in (10), can be expressed as:

H ([77 )_.]we()eml/ L, pdp

S G GR A2 e
/0 o ¢

where ( is the continuous eigenvalue. In this equation, the
integration of p’ is performed from a to b, while the integration
of ¢ is performed from 0 to co. It should be noted that, at this
point, (11) applies only when there is one material present
along the positive z-axis.

The boundary condition at z = 0 imposes that the tangential
magnetic fields are continuous at the aperture, thus:

(1)

Hy(p,z=07) = Hy(p,z=0"). (12)

As such, one can replace the electric field at the aperture
E,(p') in (11) with the one given by (1), and set z = 0 in the
resulting equation, which yields:

Hy(p, 2 = O+):jW606m1/ Ao |folp +Z Ry fn(p ]P/dp/

, /°° T(Co) T (Gp) CC
0o (k)
(13)

Equating (2) and (13) and simplifying the resulting equation
gives:

S| [

b
61711/ lfO(p/
a n=0
_ L(/D) _ = fn(p)
— o [ Yo TLXZ:ORTL Tn ] .
(14)

After rearranging the terms related to the incident wave on the
right side and the terms related to the reflected waves on the
left side, we obtain the following equation:

/ > J1(¢p) 1 (Cp")¢dC
ZR pdp /0 (C2 — k2)1/2 ]

m J J d
T pd/ s

5)
Dividing both sides of this equation by the right-hand side
yields:

fn 6ml

i R, W, =1 (16)
In which W, is equal to:O
O e
And I, is
n/m% /fn J(Cp')p'dp'dC. (18)



This equation deviates from past literature. In previous
studies, the integration was performed over both (p’,¢"), repre-
senting the coordinates of the source points within the aperture
[21]. However, in the proposed approach the last integral
is expressed in terms of Bessel functions over a continuous
eigenvalue (. This implies that instead of integrating over
spherical waves, the integration is carried out over plane
waves with different propagation factors. As we will observe
later, this formulation simplifies the analysis for measuring
two-layer materials significantly, while maintaining modeling
accuracy.

Equation (16) provides the normalized weight coefficients
W, corresponding to the reflection coefficients (R,) at a
given p on the aperture. The derived equations in this section
need to be revised to incorporate the effect of the second
layer. This will be addressed in the following section, which
begins with the calculation of the reflection coefficient of
the Layerl/Layer2 interface. Subsequently, we will update the
Layerl magnetic equation Hy(p,z = 0%) while considering
the reflections that exist between the aperture and the interface.

III. REFLECTION COEFFICIENT MODEL OF COAXIAL
PROBE IN TWO-LAYERED MEDIA

The method discussed in the previous section is only valid
when the same material extends infinitely along the z-axis
at the aperture of the probe. If the material in contact with
the probe has a finite length in the z direction and shares a
boundary with a second material at z = /¢y, as illustrated in
Fig. 1, the electromagnetic wave the probe emits is reflected
at this interface. Depending on the values of /1, €,,1, and €,,2,
this reflection can significantly impact the measurement of Ry
[30]. It is, therefore, necessary to consider this interface when
calculating Ry in multilayer media. Previous work derive the
reflection coefficient of the interface between the layers by
simultaneously solving the boundary conditions of the electric
and magnetic fields at the aperture [23], [27]. In contrast, in
this paper, successive reflections of the magnetic field between
the layer’s interface and the probe are added to determine
the total magnetic field, from which the interface’s reflection
coefficient is determined. This approach provides a better
insight into how the second layer affects the radiated magnetic
field.

A. Reflection Coefficient of Layerl/Layer2 Interface

The motivation behind the newly proposed formulation
using the Sommerfeld identity in (11) is to aid in determining
the effect of the interface reflection coefficient at the aperture.
In the literature, in the case of a magnetic field in the form
of (10), the radiation occurs in the direction of r for every
source point (p’, ¢"). This wave changes direction with every
oblique incident and continues to reflect back and forth as
will be discussed in subsequent sections [31]. Incorporating
these waves into the calculation of the reflection coefficient
introduces additional complexity.

The incident wave at the interface of the two material
layers is a radiated TM wave originating from the aperture.
Taking the derivative of the magnetic field in (11) with respect

to the continuous eigenvalue ( yields a differential wave
characterized by a wave number of 7, = (¢? — k?)Y/2
This differential wave travels along the z-axis, representing
a normal incident of a traveling wave toward the material
interface. For each specific wave number, the complex part of
the interface reflection coefficient will be different. Hence, it is
important to consider the variation in the reflection coefficient
based on the specific wave number. By integrating the updated
differential magnetic field over ( while taking into account
the aperture and interface reflection, the magnetic field can be
accurately calculated.

The differential incident magnetic field, obtained by taking
the derivative of (11) with respect to ( is expressed as:

OHyi(p, z) = He(p)e™971* (19)

where H(p) represents the magnetic radial function for every
¢, and ¢ is the propagation factor related to every ¢ in
the first layer. Given the following relationships between the
electric and magnetic fields in the two tissue layers:

. 0
Jweoem1 Epi(p, z) = —EHM(/), z), 0<z</
; (20)
jweoengpi(p,z) = _EHQ%(pv Z)a 0 < z,
the differential electric field can also be written as:
OE4i(p.2) = —j——He(p)e 2. Q1)
WENEM1

These incident waves are partly reflected back by the
interface with a reflection coefficient of R¢. The differential
electric and magnetic component of this reflected wave in the
first layer, 6Ep,. and 0Hy,, respectively, can be written as:

Y
OFE, - (p,z) = —
p (ps2) JW€0€m1

OHyr(p,2) = —R¢H<(p)ej7<1z

These waves are also partly transmitted to the second layer.
The amplitude of the transmitted waves in relation to the
incident waves can be represented by a transmission coefficient
denoted as T¢. Therefore, the transverse components of the
transmitted waves in the second region are as follows:

aEﬂt(paz) =—J By
WENEM2

OHgi(p, 2) = TcHe(p)e™7762*

where 7.2 is the propagation factor in the second layer. A
longitudinal electric field also exists in these two layers.
However, only the transverse component is needed in order
to calculate the reflection coefficient. The components of the
wave are tangential to the boundary of the two layers and need
to be continuous across it, which means:

OE,i(p,z="11) 4+ 0E - (p,z =l1) = OE(p, 2 = {1)
OHyi(p,z ={1) + 0Hpr(p, 2 = 1) = OHgyt(p, 2 = 61224)
Replacing (19), (22) and (23) in (24), and simplifying the
resulting equation leads to:
g(s!
JWEEm1

R H-(p)ed etz
¢Help) )

TeHe(p e 2
cHe(p) @)

.LTg
JWEOEM2
1-R;=T¢

1+ Ry) =
(1+Re) @5)



Solving for the reflection coefficient using the above two
equations results in:

o 7(2/741 - €m2/6m1

Ye2/ V¢ + €ma/€m1

This equation provides the reflection coefficient of the differ-

ential incident wave from the layerl/layer2 interface. In order

to account for the influence of the second layer on the coaxial

probe measurement, it is necessary to update the magnetic

wave at the aperture using (26). Subsequently, the model will
be redefined, as explained in the following section.

(26)

B. Aggregated Reflection Coefficient of Probe/Layer 1/Layer 2

To determine the aggregated reflection coefficient from all
interfaces seen at the probe’s aperture, the total accumulated
differential magnetic wave at that point, which includes multi-
ple waves reflected from all interfaces, needs to be calculated.

Referring now to Fig. 2, as the radiated wave 0Hy; exits
the probe, it propagates toward the interface between layers
1 and 2, and its magnitude at any point along z between the
probe and the layer’s interface is given by (19). Once the wave
reaches the layer’s interface, part of the wave is reflected back
toward the probe. If the magnetic reflection coefficient at that
point is — R, the magnitude of the reflected magnetic wave
as it returns to the aperture becomes —R¢He(p)eret (3726,
Notice that z changes sign since the wave travels back, and a
spatial offset of —2¢; is added to account for the distance the
wave has traveled from the aperture. Considering the probe is
replaced with perfect electrical conductor (PEC), its magnetic
reflection coefficient is +1. Thus, once the returning wave
reaches the probe, it reflects back toward the layer’s interface
with magnitude —R;H¢(p)e~7<1(*+260) Consequently, with
each reflection at the PEC, the wave’s magnitude becomes
twice that of the arriving wave, given that at z=0, the arriving
and corresponding reflected waves have identical magnitudes
and phase. Subsequently, upon reaching the layer’s interface
again, part of the wave is reflected back to the probe, and the
process continues infinitely.

After the n!" reflection from the layer’s interface, the
magnitude of the differential magnetic wave traveling toward
the interface is (—R¢)" H (p)e~ <1 (3+2741) Finally, it follows
that the sum of all these reflected waves at z = 0, plus the
original radiated wave, is the total differential magnetic wave
OH gy, at the aperture, which is given by:

OH(p. 2 = 0) = ot

+ 2R?H<(p)e_47<1€1
+ ...

H¢(p) —2RcH¢(p)e
— 2R} H, (p)e 011t

142 (=Ree >1f)

n=0

”] He(p)

27)

The above summation can be expressed as a Taylor series

expansion, provided that R-e™7¢ 1261 < 1, which is always the

case for non-ideal materials. Considering R, = Rce 2071,
the total differential magnetic wave at the aperture is:

1 _
Ot =0) = (1570 ) Ot

—_— 28
14+ Ra( ( )

z=0

The above equation shows that the radiated differential mag-
netic field multiplied by the aggregated reflection coefficient
i +§“< is the total differential magnetic field at the aperture.
The integral of (28) over ( is the magnetic field at the
aperture considering the effect of the second layer. This can
be expressed as:

b 9]
1+ R,
Hy(p,z=07) :jWEOGml/ E, (Pl)ﬂ/dpl/ (—FC
a 0

1—- R,
J1(¢, p) 1 (¢, P)
1 = i k2(> d¢

(29)
Repeating the steps taken to reach (14) from (12) with the
updated magnetic field at aperture when two layers are present,
one converges to (16) and (18). However, it is necessary to
revise the equation for I,, as follows:
Cp')p'dp’d¢

1+ Ra( Jl Cp /
In = n
e v =S L
(30)

This equation can be further simplified to a single integral
by integrating over p’

_ <1 + RaC Jl (C:P)C
AR s v AL
where D,,(¢) is as follows:
2N < .
o) = T =
[Jo(Cb)Jo(pn ) = Jo(Ca)Jo(pnb)] 1 >0 (32)
Do(¢) = [Jo(Ca) — Jo(¢D)] n=0

\/mc

Using this updated equation, the normalized weight reflec-
tion coefficients W,, of two-layer material can be determined.
Of particular interest in (16) is the primary mode reflection
coefficient Ry. The primary mode is the only mode that
propagates along the z-axis, and its reflection coefficient
Ry is the parameter measured experimentally using a VNA.
However, R cannot be directly determined from (16) due to
the presence of an infinite number of unknown higher-order
reflection coefficients R,,.

In the following section the point-matching approach is
presented, which is used to extract a system of multiple
equations from (16) allowing one to solve for Ry.

IV. REFLECTION COEFFICIENT THROUGH POINT
MATCHING

Up to this point, the normalized weighted reflection coeffi-
cients for both single-layer and two-layer materials are given
for all modes at a specific radial position p at the aperture,
from which Ry needs to be determined. One approach to
achieving this goal is the point-matching method described
in the following subsection.

In order to determine Ry from (16), it is necessary to
truncate the number of considered modes to /N. When dealing
with a multi-variable problem, an equal number of equations
as the number of modes being considered is required. Two
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Fig. 2. Reflection diagram illustrating the interaction of a radiated magnetic
wave between the interface and a perfect electrical conductor (PEC). The
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methods have been proposed in the literature to obtain these
equations from (16). One of these methods is Galerkin’s
method, which involves multiplying both sides of (16) by
basis functions f,(p) and then integrating both sides over the
range from a to b [23]. Upon integration, the dependency on
p is eliminated. The integration process can be simplified by
utilizing the orthogonality identity of Bessel functions. Nev-
ertheless, this method remains computationally intensive as it
involves calculating three-dimensional integrals numerically.
The second method, which is the one employed in this
paper, is the point-matching method [21], [32], [33]. This
approach involves deriving multiple equations by selecting
different matching points (p;) in (16). By doing so, the com-
putational cost can be reduced, as the solution does not rely
on three-dimensional integrals. This can be done by dividing
the space between a and b (See Fig. 1 (¢)) into N equal
segments and matching points in the middle of each segment.
Additionally, [21] suggests that for faster convergence of the
multi-variable problem, the points can be determined based
on the arithmetic mean of both the internal and external
distributions as follow:
b—a|1-1 2i—1
2 [N -1 2N

Equation (33) gives a set of matching points p; that when
substituted into (16) form a system of N equations. Solving
this system of questions yields the reflection coefficients R,,
for mode n = 0 up to mode n = N, providing a solution
to the forward problem, that is, determining the reflection
coefficient Ry for a probe inside a one or a two-layer material.
An advantage of the proposed method compared to [23], [27]
is that it requires N fewer infinite integrals over continuous
eigenvalues ¢ compared to other two-layer models, for the
same number of considered modes. The inverse problem, i.e.,

pi=a+ :|> 7;:1727"'7]\[ (33)
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Fig. 3. Experimental setup used to validate the proposed model: The aperture
of open-ended coaxial probe connected to a VNA is emerged in a 2-layer
MUT. The latter rests on a linear stage that can move vertically, allowing the
distance ¢1 between the probe’s aperture and the MUT layer interface to be
controlled with 10 pm increments. Two experimental scenarios with different
MTU are used: one with water on top of resin, and the another with water
on top of a PEC.

determining the permittivity of a layer given Ry, typically
involves multiple iterations of the forward model. Therefore,
simplifying the forward model substantially decreases the
overall computational time required to obtain a solution for the
inverse problem, making it ideal for real-time measurements.

In the next section, the forward model will be validated
experimentally in two different scenarios. Additionally, to
demonstrate the utility of the model in practical applications,
the model is implemented in an inverse problem that estimates
the permittivity of one layer, or the distance from the second
layer (¢1), based on the measured reflection coefficient.

V. EXPERIMENTAL RESULTS

The experimental setup used to validate the model is shown
in Fig. 3. A standard 50 €2 semi-rigid coaxial probe (RG402
from L-com), with a dielectric radius of b = 0.15 mm and an
inner conductor radius of @ = 0.46 mm, is directly connected
to a R104B vector network analyzer (VNA) from Copper
Mountain. The VNA measures the reflection coefficient (Rp)
of a 2-layer MUT placed near the probe’s aperture. Connect-
ing the probe directly to the VNA minimizes discrepancies
between the measured reflection coefficient and the actual
reflection coefficient observed at the aperture of the probe.
In order to eliminate coaxial probe length and interconnection
influences, the same technique explained in [20] is used for
calibration of VNA and probe using tests performed with air,
water, and ethanol [34].



1.00.80.60.40.20.0 1.00.80.60.40.20.0 1.00.80.60.40.20.0 5,01 mm 6,202 mm B,04 mm

Q180 m 360° 180 360° 180
G — easurement
< = = Model
= /
)
)
wn
§ 225° 315° 225°
N=|
270° 270° 270°
o 1.00.80.60.40.20.0 1.00.80.60.40.20.0 1.00.80.60.40.20.0
*5180° 360° 180° 360° 180°
<
=
)
)
wn
=]
8 225° 315° 225° 315° 225° 315°
)
o) . o .
0 270 270 270 :
£1=0.1 mm £1,=0.2 mm £1=0.4 mm frequency (f) GHz

Fig. 4. Measured vs model-predicted reflection coefficient at 3 fixed distances £; = 0.1 mm, 0.2 mm, and 0.4 mm from the MTU interface in the first
scenario (water/resin) and second scenario (water/PEC): points on each of the 6 polar plots on the left corresponds to one of the 201 measurement frequencies
spanning 1 GHz to 5 GHz. The measurement (solid) and model (dashed) results show good consistency. The last column on the right shows the relative error
between the model and the measurements for an average error of 1.75%. The first and second rows correspond to the first and second scenarios, respectively.

Of=1GHz Of=3GHz Af=5GHz
1.00.80.60.40.20.0 1.00.80.60.40.20.0 1.00.80.60.40.20.0 5
1 K ©  Measurement g»?5mm 360° 180 360° 180 360/.\4 g 8 &
O Model 00_39,;": S5 i 0 o
1 A L
B 0 g

o 0.050.1 02 0.3 0.4 05 0.6 0.7
1.00.80.60.40.20.0

360° 180
S

225°

270°
1.00.80.60.40.20.0
80°

360° 180 360°

(o] 0
(]

Error(%)

— N W e
=)

]

315° 8 8 o o 6 9 o

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance (¢1) mm

second scenario first scenario
= [e0]

270°
/=3 GHz

270°
/=5 GHz

Fig. 5. Measured vs model-predicted reflection coefficient at 3 fixed frequencies f = 1 GHz, 3 GHz, and 5 GHz in the first scenario (water/resin) and second
scenario (water/PEC): Every point on each of the 6 polar plots on the left corresponds to one of the 8 considered distances ¢; between the probe’s aperture
and the MTU layer interface spanning 0.05 mm to 0.70 mm. The last column on the right shows the relative error between the model and the measurements

for an average error of 1.85%. The first and second rows correspond to the first and second scenario, respectively.

A. Experimental Scenarios

The MUT is composed of two layers of different materials
of known permittivity placed on top of one another inside of
a glass container. The probe’s aperture is initially immersed
in the top layer of the MUT at a distance of ¢; from the
bottom layer. The container rests on top of a linear stage that
can move vertically in steps of 10 pm. This allows the MUT
to be translated vertically while the probe is held in place,
thereby changing the distance ¢; between the probe’s aperture
to the second layer of the MUT.

Two different MUT are considered:

« First scenario: Distilled water (with relative permittivity
73 < €1 < 78 ) and liquid resin (Formlabs’ V4)
(with relative permittivity 3.4 < €0 < 4.4) are used
as the top and bottom layers of the MUT, respectively.
The probe’s aperture is initially placed in the higher
permittivity material, and by raising the linear stage, the
probe moves toward a lower permittivity material; The
permittivity of the resin was measured using the single-
layer model we proposed in [20].

e Second scenario: Distilled water (with relative permit-

tivity 73 < €, < 78) and a perfect electric conductor
(aluminum puck) are used as the top and bottom layers
of the MUT, respectively. In contrast to Scenario 1, by
raising the linear stage the probe’s aperture moves toward
a higher permittivity material.

As a starting point, a reference initial distance ¢; between
the probe’s aperture and the interface between the two mate-
rials of the MUT needs to be determined. The initial distance
should be within the probe’s penetration depth so that the
bottom layer of the MTU does have an influence on the
measured reflection coefficient. Considering that the probe’s
penetration depth is approximately equal to its diameter [30],
[35], an initial distance of ¢; = 0.3 mm is chosen. To
circumvent the fact that there is no way to physically measure
the distance /1, the probe is initially placed close to the second
layer (¢; > 0) and the reflection coefficient is measured.
Model fit is then used to determine the correct initial distance
{1. A few iterations are performed where the position of the
probe is adjusted until the model outputs the desired initial
distance. This process is only executed once, and subsequently
the linear stage is used to move the MTU container vertically



with respect to the initial position.

The VNA measures the reflection coefficient of the MUT
from /1 = 0.7 mm to £; = 0.1 mm in 0.1 mm intervals, with
an additional step at ¢; = 0.05 mm at a frequency ranging
from 1 GHz to 5 GHz, sampled at 20 MHz intervals for a
total of 201 individual frequencies.

B. Forward Model Validation Results

To validate the forward model, the frequency, the distance
¢1, and the permittivity of both MUT layers are input to the
model and the estimated reflection coefficient is then compared
to the measured reflection coefficient. A Python script was
developed to compute the reflection coefficient across the same
measurement scenarios based on the proposed model. The
Quad function from the SciPy library is employed to determine
the numerical integration of I,, values. The inner integral’s
range over ¢ in (31), initially set to infinity, is confined to
10°. The calculation is constrained to five modes, i.e., n = 5
in (16) chosen based on recommendations from prior research
on the one-layer model [21]. Consequently, the determination
of Ry involves solving a system of 5 linear equations, executed
through the Solve function from the Numpy library.

Fig. 4 and 5 compare the measured reflection coefficient
with the model-predicted reflection coefficient for various
frequencies and distances ¢;. Fig. 4 shows the results across
the entire frequency bandwidth at three fixed distances of
¢; = 0.1, 0.2, and 0.4 mm. Each point on the polar plot
corresponds to a specific frequency. In the first scenario, the
model shows an error of less than 1% at 1 GHz compared to
the true measurements. The observed error increases slightly
with the frequency but does not exceed 3% for an average error
of 1.8 % across all 804 measurements. For the second scenario,
the error is under 2% for ¢; = 0.1 mm and = 0.2 mm for
the entire frequency bandwidth. While the error reaches 5%
between 1.5 GHz and 2.5 GHz for ¢; = 0.4 mm, the average
error is 3.5 % across all measurement points.

Fig. 5 shows the results across all measured ¢; distances at
3 fixed frequencies of 1 GHz, 3 GHz and 5 GHz. Each point
on the polar plot corresponds to a specific distance ¢;. The
average errors observed in scenarios 1 and 2 over all 1608
measurements are 1.8 % and 1.7 % respectively.

The primary source of error, notably evident in the first
scenario, arises from uncertain measurements of the resin’s
properties at high frequencies as there are no data available
in the literature to validated the measured result. Another
potential error source in the first scenario is the presence of
solvents in the resin, affecting both water and resin permit-
tivity values. Additionally, VNA and probe calibration may
further contribute to the observed errors in both scenarios. For
example, differences in material properties used for calibration
and the actual experiment could lead to imprecise calibration.
Finally, uncertainties in the linear stage position measurement
might also contribute to errors. Despite these potential error
sources, the proposed model exhibits strong consistency with
the measured results.

TABLE I
PERMITTIVITY ESTIMATION ERROR OF WATER IN SCENARIO 1 (RESIN)

distance ¢; from second layer

Model 0.lmm 02mm 0.4 mm
Single-layer [21] 72.1% 56.2% 32.6%
dProposed two-Layer  1.36% 0.87% 1.08%

C. Inverse Model Validation Results

In the previous subsection, the model is used to calcu-
late the reflection coefficient Ry for a given combination of
€m1, €m2, and ¢1. Another method deployed to validate the
proposed model, which has many applications in biomedical
spectroscopy [36]-[39], is to use the model in an inverse
problem. The inverse problem entails determining the model
parameters (such as {1, €,,1, and €,,2) necessary to match a
measurement, in this case, Ry. In the context of a multilayered
medium, one application involves determining the distance ¢;
between the probe tip and the interface, or the permittivity €,,,
given other parameters as inputs.

In [34], a Newton-Raphson method is used to extract the
permittivity of single-layer materials. This study employs a
similar technique with some modifications to address the two-
layer problem. To do so, let Ry be represented by the multi-
variable function R(€,,1,€m2,%1). The frequency and other
model constants are omitted for simplicity of notation. If
the measured reflection coefficient is Ry,,, then the unknown
parameter, e.g., {1 or ¢,,1, is the root of:

F(Emh 6m27‘€1) = R(Emlv sz,fl) — Rom

It should be noted €,,1, €2 € C, while ¢; € R. Assuming
a current estimation of, for example /;(;), the following
approximation holds true for an iterative improved estimation:

(34)

F(emla 6’m23£1(i+1)) = F(enLla €m27£1(i))+

where Aly; is the increment value. Rearranging the afore-
mentioned equation yields:

(35)

F(Emla 6mZ,Zl(i))

LGN T T (0
the updated ¢; then would be:
Cigiry = by + Al (37)

Fig. 6 compares the estimated distance ¢; using the inverse
problem with the measured distance for the two scenarios
across the entire frequency range for an average error of
10 pm.

Through the same procedure the permittivity values can be
extracted when other parameters are know by setting:

F(emi, €ma, l1(i))
(OF/em1) iy

Em1(i+1) = Emi() T A€mie)

Aepigs = — (38)

(39)

The real part of the estimated permittivity of the first layer
€m1 in Scenario 1 is presented in Fig. 7 along with its



-©-400 pm =300 ym

400 ;\m“—e‘h——e-‘e——e——e—ﬁe

& 300 d——p——A £ 2 AP

200 pm -100 ym

(1

& 200 1

100

400 _M

E 300 f—t—A A A

=
' 2001

100 S

15 2.0 25 3.0 35 40 45 5.0

Frequency (f ) GHz

1.0

Fig. 6. Estimated distance between the probe aperture to the second layer
£ the using the inverse problem in water/resin and water/PEC scenarios. For
example, at a measured distance of 400u (blue) the ideal estimated distance
would correspond to a straight line at 400u spanning the entire frequency
bandwidth. The average error for all 1608 extracted points is 10 pm.

measured permittivity fitted through a Cole-Cole model. To
demonstrate how the proposed model enhances the accuracy
of permittivity measurement, also included in this figure is
the extracted permittivity using the single-layer model for
¢; = 0.4 mm. The average error for both models for all
measured distances is provided in Table I. Notably, even at
a distance of ¢; = 0.4 mm, where the second layer is situated
approximately at half of the penetration depth of the probe,
the permittivity of the second layer substantially affects the
measured permittivity. Without considering the effect of the
second layer, the observed error is 32.6%, whereas with the
proposed model the error is 1.08%.

VI. CONCLUSION

While most applications of permittivity spectroscopy in-
volve heterogeneous materials, previous works on modelling
open-ended coaxial probes often assume the medium to be
made of a single layer of an homogeneous material. This paper
proposes a novel method to model the reflection coefficient of
an open-ended coaxial probe in layered media. The model
considers the reflection coefficient of all medium layers in a
full-wave reflection model. In contrast to other methods, spher-
ical waves are expanded to plane waves using the sommerfeld
identity. This results oblique incident to the interface to be
replaced with normal incident. Radiation from the aperture
to second layer occurs in oblique incident. This alteration
simplifies the calculation of the reflection coefficient from the
second layer. The overall proposed model offers a simpler
formulation than a few existing models while maintaining
accuracy.
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Fig. 7. The real part of the extracted permittivity of the first layer (water,
€m1) for the first scenario (water/resin) at three distances £1 = 0.1 mm, 0.2
mm, and 0.4 mm using the proposed model, along with the result at £; = 0.4
mm using the single-layer model. Additionally, the Cole-Cole model of water
is presented for reference.

Two experimental scenarios are considered to validate the
model’s ability to correctly estimate the reflection coefficient
of a two-layer material. In these experiments, the probe’s
aperture is placed near the interface between the two tissue
layers and within the penetration depth of the coaxial probe. In
this specific region, the second layer influences the reflection
coefficient seen by the probe. The results obtained in the
experimental scenarios across a total of 1608 measurement
points show that the model can accurately predict the reflection
coefficient. These measurements are further used in an inverse
problem to estimate both the distance ¢; and the permittivity
€m1 Of the first layer. While ignoring the second layer (using a
single-layer model) results in inaccurate outcomes, the results
obtained using the proposed model, when compared with the
Cole-Cole model of water, shows remarkable accuracy.

The proposed model has several practical applications.
For example, a major challenge in using coaxial probes for
spectroscopy of solid materials is to deal with the air gap
between probe tip and the MUT, which can strongly affect
the measured reflection coefficient. With the proposed model,
if a fixed and controlled air gap is maintained, the effect
of the latter on the reflection coefficient can be taken into
account. Furthermore, the proposed model can be employed
for permittivity measurement of heterogeneous materials such
as biological specimens. Especially in these applications, real-
time measurement is essential. The low computational require-
ments of this method, while maintaining the accuracy of the
full-wave, provide a distinct advantage compared to a few
other proposed methods.
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