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Abstract—Electrical impedance tomography (EIT) is a non-
invasive medical imaging procedure. Image reconstruction in EIT
is difficult because it involves solving a non-linear and ill-posed
mathematical problem. One of the most commonly implemented
inverse approaches is usually a variation of the Newton Raphson
algorithm. However, this approach is not guaranteed to reach a
global optimum or a local optimum and as such, it requires an
accurate initial estimation of the resistance distribution, which is
not always available in practice.

In this paper, a new method is proposed to solve for the
inverse problem in EIT while avoiding dependencies on the initial
estimation of the resistance distribution. The proposed approach
uses a differential evolution (DE) optimizer integrated with the
Newton Raphson algorithm. The stochastic nature of DE allows
the problem to be solved without having an accurate initial
estimation and allows for solutions that will not be trapped in
local minimal values. Simulation results indicate that the pro-
posed approach outperforms the traditional differential evolution
algorithm, and performs similarly to the traditional Modified
Newton Raphson algorithm with accurate initial estimation. The
proposed method does, however, have an advantage over the
Modified Newton Raphson algorithm as it does not require an
estimate of the initial resistance distribution.

Index Terms—Electrical impedance tomography; differential
evolution; Modified Newton Raphson.

I. INTRODUCTION

Electrical impedance tomography (EIT) is an inexpensive
and non-invasive way of conducting medical imaging when
compared to traditional methods like X-Ray and Magnetic
Resonance Imaging (MRI) [1], [2]. EIT is able to provide
an image of the conductivity distribution of the tissue being
examined. The produced image can assist health officials in
in a variety of applications such as cranial imaging of new-
borns, lung imaging, hyperthermia treatment, breast imaging,
amongst many others [3]–[6]. Although the resolution of EIT
is not as advanced as X-Ray or MRI, it is more pleasant for the
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patient as it only involves placing electrodes on the periphery
of the body [7].

EIT reconstructs the resistivity or conductivity distribution
of the tissue under test by applying electric current through
a given pair of electrodes and observing the induced voltage
across the other ones. From the current-voltage data, an image
is created based on the reconstructed resistivity distribution
that satisfies the voltage-current relationship.

The conductivity distribution inside the body of interest can
be termed as σ(~x), where ~x is the voxel position. Electrical
current only flows inside the medium ζ and the voltage
distribution inside ζ is U(~x). Solving the problem of EIT
usually requires two approaches: the forward solution as well
as the inverse solution [8]. The forward solution calculates
the boundary voltages of ζ given an initial σ(~x), whereas
the inverse problem is to calculate σ(~x) while knowing the
boundary voltages.

In mathematical terms, the forward solution is defined as:

Ub(~y) = f(I(~y), σ(~x)), ∀~y ∈ ∂ζ ∧ ~x ∈ ζ. (1)

In other words, if a current I(~y), is applied to ζ, find the
induced voltages Ub(~y) given a known resistivity distribution
σ(~x). The inverse solution is posed as:

σ(~x) = f−1(I(~y), Ub(~y)), ∀~y ∈ ∂ζ ∧ ~x ∈ ζ. (2)

More specifically, given the applied boundary current I(~y),
find the conductivity σ(~x) that gives the measured boundary
voltages Ub(~y).

Finding the solution to (2) is not always a trivial task [9].
The inverse solution is ill-posed if the amount of unknown
parameters exceed the amount of unique voltage measurements
[8]. Hence, there can exist multiple σ(~x) solutions for a
given set of boundary voltage values and determining the true
resistance distribution amongst all possible solutions is the
challenge of EIT. Usually, the two approaches of (1) and (2)
are implemented together in an iterative fashion to solve for
the true resistance distribution.

A comprehensive review on different methods to solve
the forward and inverse solution can be found in [10],
[11]. Most of these methods can be broadly classified into
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deterministic and stochastic approaches. Methods to solve
for the forward solution typically fall in the first category
and include Kirchoff’s current law, finite element modelling,
boundary element methods, and linear box-approaches [12]–
[15]. For the inverse solution, deterministic methods such as
the Modified Newton Raphson (MNR), perturbation method,
sensitivity theorem, and block approach have been proposed
[16]–[21]. Evolutionary methods such as differential evolu-
tion (DE) and particle swarm optimization are examples of
stochastic approaches used to set up the inverse formulation
of ill-posed problems [22]–[24]. More recent advances in
computational resources has given rise to intelligent machine
learning algorithms. The problem of electrical impedance
tomography has also been reconstructed by using methods like
Convolutional Neural networks [14], [25]–[27] and Bayesian
Learning [28]. However, these algorithms require a complex
network as well as an extensive training period and testing
data.

Deterministic methods generally achieve a solution in a
faster time frame than computationally heavy stochastic and
intelligent algorithms such as differential evolution [29]. How-
ever, deterministic methods require an accurate initial estima-
tion of the resistivity distribution σ(~x) in order to converge to
a global optimum. It has been reported that the initial guess for
the well-known MNR algorithm for example must be within
a range of 0.1 to 10 times the average magnitude of the true
resistivity [16]. This may not always be feasible as information
required to make the initial estimation may not be available.
A popular alternative to MNR are the so-called perturbation
methods, which make use of an approximation of a Jacobian
matrix that is known to not always lead to convergence when
compared to MNR [17], [18]. On the other hand, stochastic
methods are more effective in the sense that they generate
random solutions to avoid convergence in local minima [30].
However, convergence takes an excessively long time to obtain
feasible results, particularly when trying to identify an area of
focus within an unknown medium. Thus, a hybrid solution
combining MNR and a stochastic method is suitable.

In this paper, a novel algorithm that integrates differential
evolution with the Modified Newton Raphson algorithm is
presented. It is a hybrid approach. The proposed method
uses MNR to optimize the candidate solutions obtained from
DE before they are considered for further iterations. The
hybrid algorithm does not require an accurate initial esti-
mation σ(~x) to converge to a potential solution. It is also
able to generate successful results in a shorter time frame
than DE. The contributions of this paper is an optimization
algorithm that: (1) implements the Modified Newton Raphson
algorithm to optimize the mutated solutions of the differential
evolution algorithm and (2) also dictates the crossover factor
of the algorithm depending on the fitness of the optimized
mutated solution. Hybrid methods combining stochastic and
deterministic methods have been proposed before. A paper
implementing both DE and the MNR algorithm to solve the
problem of EIT was published by Li et al [29]. In their
approach, the DE algorithm executes once to find a suitable

 

Fig. 1: Simplified electrical resistor grids with different in-
jected current Is and voltage measurement patterns at the grid
boundary.

initial resistance estimation to the EIT problem. Immediately
following, they implemented the MNR algorithm with the
found initial resistance estimation to solve for a final con-
verged solution. Their approach only executes DE and MNR
once, in a successive fashion. The output of the DE is the input
for the MNR algorithm. The final solution then heavily relies
on the output of the DE algorithm to generate a suitable initial
resistance distribution. The DE algorithm may not always
generate a suitable initial resistance distribution. This paper’s
approach has the ability to optimize every individual within
the DE algorithm’s population using MNR. Therefore, there
is a higher chance of a successfully converged final solution
because the individuals in the population will have been
optimized by the MNR algorithm.

This paper is structured as follows: Section II outlines the
mathematical foundation of the Modified Newton Raphson
algorithm. It is then followed by the background of the
differential evolution algorithm in Section III. The integrated
hybrid approach is presented in Section IV, which is then
followed by simulation results and conclusions.

II. MODIFIED NEWTON RAPHSON ALGORITHM

The conductivity distribution, σ(~x), can be discretized in a
finite number of resistive elements and modelled as a square
resistor grid with resistors arranged in horizontal and vertical
fashion as shown in Fig. 1. Each resistor can be represented as
having a resistance r and the size of the square resistor grid is
s×s, where s is the number of horizontal nodes in the resistor
grid. The circuit is excited with an injected current of known
magnitude through different pairs of boundary electrodes. The
current flowing through a given pair of electrodes induces a
voltage at the remaining electrodes. Boundary voltage mea-
surements are then taken at different electrode pairs. The
different injection current patterns and measurements patterns
determine how many unique measurements there are for a
given resistor grid.

Using Kirchhoff’s current law, the sum of the currents at
every node of the resistor grid can be used to establish a
mathematical relationship between the voltages, resistance and
injected current at every node. Once the equations are arranged
in a matrix format, the forward solution (1) can be represented
as:

Ub = C−1I (3)
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where Ub ∈ Rs2×1, is a column vector that holds all the
boundary voltages. The matrix C ∈ Rs2×s2 is the conductivity
matrix (the inverse of electrical resistivity) and I ∈ Rs2×1 is
a vector that holds all the injected currents patterns in a given
pair of nodes located in the boundary of the resistor grid [17].

The Modified Newton Raphson approach iteratively updates
the initial conductivity distribution input until the calculated
boundary voltages match the measured boundary voltage for
a given current injection input. The update to the resistance
distribution can be summarized as:

rk+1 = rk + ∆rk. (4)

In (4), rk ∈ R1×(2s2−2s) is the current resistance distribution
at iteration k, ∆rk is the calculated change to be applied to
the resistance distribution and rk+1 is the updated resistance
distribution. The MNR iterative procedure stops when ∆rk is
smaller than a predetermined tolerance value. Once the itera-
tive procedure has stopped, it is assumed that the algorithm has
converged to a final solution of r, which is a possible solution
that represents the true resistance distribution of the medium,
provided that the problem is well posed and the initial guess
r0 is accurate.

To start the MNR algorithm, an initial resistivity distribution
r0 needs to be specified. The values of r0 are crucial as they
determine whether the algorithm can successfully converge to
a solution or not. If r0 is very different from the true resistance
distribution rt, then the algorithm will not converge. It is found
that if |r0−rt| < 10, then the converged solution is generally
acceptable [16]. Therefore, it is crucial to have a good starting
r0 to initialize the MNR algorithm. This is the main limitation
of implementing the MNR algorithm.

To calculate the resistance updates, ∆rk, an error term is
required. The error is defined as the least mean square error
between the calculated and observed boundary voltages given
at every iteration as:

θ(rk) =
1

2

[
V(rk)−V0(ζ)

]T [
V(rk)−V0(ζ)

]
(5)

where V ∈ Rn×p is a matrix that holds all the calculated
boundary voltages given rk for all the different injection
current patterns [17]. The variable n represents the amount
of boundary electrodes and p represents the amount of current
injection patterns. Likewise, V0 ∈ Rn×p are the respective
measured boundary voltages.

In order to find a solution rk that minimizes the error
between V and V0, (5) is differentiated with respect to rk

and set equal to 0 [17]:

∂θ

∂rk
=
∂V

∂rk

T

[V −V0] = 0, or (6)

θ′ = [V′]T [V −V0] = 0. (7)

In (7), the term V′ = ∂V/∂rk ∈ R2s2−2s×n is the Jacobian
matrix representing the rate of the change of the calculated
boundary voltages with respect to each of the resistors in rk.

Fig. 2: The MNR algorithm starts with an initial resistance
distribution r0 and calculates the required resistance updates
∆rk to apply upon itself. After running through the algorithm
for a prescribed amount of iterations, the algorithm may
converge to a global solution if the initial resistance estimation
r0 is close to the true resistance distribution rt.

The general form of the Jacobian matrix can be seen as:

[V′] =


∂V1

∂r1
∂V2

∂r1
. . . ∂Vn

∂r1
∂V1

∂r2
∂V2

∂r2
. . . ∂Vn

∂r2
...

...
. . .

...
∂V1

∂r2s2−2s
. . . . . . ∂Vn

∂r2s2−2s

 . (8)

Since (7) is a nonlinear function of r, a Taylor series
expansion is taken on (7) about an arbitrary point r = rk.
Thus (7) can be approximated as:

θ′ ≈ θ′(rk) + θ′′(rk)∆rk. (9)

The term θ′′ = ∂2V/∂r2 is the Hessian matrix given by [17]:

θ′′ ≈ [V′]T [V′]. (10)

To isolate for ∆rk, (7) and (10) are substituted into (9) to
yield:

∆rk =
{

[V′(rk)]TV′(rk) + λW
}−1

[V′(rk)][V(rk)−V0].

In the above, W is an identity matrix and λ ∈ R+ → 0
is a scalar. Together, W and λ are added to the original
formulation to mitigate the ill-conditioning of the problem and
prevent the system from reaching singularity when performing
the inverse [17], [31]. The resistance update term ∆rk is then
used in (4) to calculate the updated resistance distributions.
The flowchart in Fig. 2 illustrates the workflow of the Modified
Newton Raphson algorithm.

III. DIFFERENTIAL EVOLUTION ALGORITHM

Differential evolution is a population based stochastic op-
timization algorithm that aims to find the global optimum
solution of a given objective function [32]. The algorithm starts
with a randomly initialized population of candidate solutions
(individuals). Through various generations, the population is
evolved via repeated evaluations of the objective function. The
individual in the final population with the lowest objective
function (fitness value) is often deemed as the solution. The
random nature of the algorithm avoids local minima conver-
gence. The single objective minimization problem may be
stated as follows:

q(rt) = min θ(ri), ri ∈ P | P(i, j) = [Lj , Dj ] (11)
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where q is the final fitness value, θ(ri) is the objective function
as in (5) and ri is a vector that represents individual i in
the population [32]. Similar to MNR, each ith individual is a
vector string ri ∈ R1×(2s2−2s) that holds all the resistor values
in the resistor mesh. All the individuals are stored in a 2-
dimensional matrix, P ∈ Rπ×(2s2−2s), where π is the number
of individuals in the population. Thus, row i of P contains
the ith individual in the population while each column j of P
contains all resistors j for all individuals. The global optimum
solution is rt, while L and D are the lower and upper bounds
of each resistor in r. Differential evolution algorithms have 5
distinct steps [32]:

Population and parameter initialization: The initial pa-
rameters of the algorithm are set. This includes: number of
individuals in the population π, number of generations γ,
number of runs ρ, mutation factor ψ, and crossover factor
ε. Both the mutation factor (ψ) and crossover factor (ε) are
numbers that range from [0 1]. Random initial individuals ri
are generated within a given range [L D] to form the initial
population of P0.

Mutation: Mutation takes place after the initial population
is established. It is a crucial step to evolution as it introduces
further randomness to the initial population so local minima
are avoided. Mutation helps generate new mutated individuals
that were not originally created during the initialization step.
For each individual in the population, a mutant vector is
generated. There are different formats of mutant vectors. In
this study, the “DE/rand/1” format is selected [32]:

h = ra + ψ(rb − rc) (12)

In (12), h is the mutant vector, ψ is the mutation factor defined
in Step 1, and ra, rb and rc are randomly selected individuals
from P. If ψ is large, the mutation is said to be large and the
mutated vector h will be significantly different from any of
the individuals in P.

Crossover: The crossover follows the form of Binomial
Crossover [33]. The crossover vector z is generated based on
a random number c ∈ [0 1]. The act of the crossover itself
depends on the crossover factor ε set during Step 1. This
process limits how much of the mutation vector h will be
moved forward to evaluation in the next step. The larger ε the
more likely z will resemble h. On the contrary, the smaller ε
is, the less likely z will resemble h. The variable ι is a random
number ι ∈ [1 2s2 − 2s]. Its purpose is to guarantee that at
least one crossover is executed. The crossover is

zi,j =

{
hi,j if c ≤ ε or j = ι

ri,j otherwise
. (13)

For every jth resistor in ri, a new c is generated.

Selection: The crossover vector z is compared against the
target vector rγ in the current generation to determine which
is more fit to be survived into the next generation (γ+1). The

process can be demonstrated by (14).

rγ+1 =

{
z if f(z) < f(rγ)

rγ otherwise
. (14)

Repeat: The algorithm repeats the mutation, crossover, and
selection stages until the maximum amount of iteration (gen-
erations) is reached. The most fit individual in the population
of the last generation is the found optimum solution given the
initialized parameters.

IV. DIFFERENTIAL EVOLUTION INTEGRATED WITH
NEWTON RAPHSON ALGORITHM

Although the Modified Newton Raphson and differential
evolution algorithms both serve as potential solvers for the
problem of EIT, they each have their own drawbacks. The
MNR algorithm requires an accurate initial estimation to
ensure convergence of the final solution. This is not always
feasible as the medium being imaged is often unknown and
an accurate initial estimation is not easily obtained. The DE
algorithm does not require an accurate initial resistance esti-
mation, however, it has difficulty identifying areas of higher
resistance within the medium, in a short time frame.

In the proposed approach, the MNR algorithm is embedded
into the DE algorithm. The objective function of the proposed
algorithm is similar to (5) where the output is the difference
between the calculated boundary voltages and the measured
boundary voltages. In this hybrid approach, there are two
significant differences than traditional DE. First, the hybrid
approach optimizes the solutions of regular DE using MNR.
Second, the crossover process is dynamic and depends on the
fitness of the individual being evaluated.

The MNR algorithm is integrated into the mutation step
of differential evolution. Instead of (12) as the mutant vector,
the output of (12) is entered into (4) as the initial resistance
distribution, r0. And after k iterations, the output is the new
mutant vector, h∗. The new mutant vector h∗ in (15) is then
used in the subsequent steps of DE in the Crossover and
Selection stages.

hk+1
∗ = hk∗ + ∆hk∗ (15)

Given: h1
∗ = ra + ψ(rb − rc)

Each individual in the population would have a evaluated
fitness value associated with it. The fitness value of each
individual is calculated using (5).

The crossover factor is also varied and not fixed in the
proposed algorithm. In traditional DE, the crossover factor is
a fixed value denoted by ε as shown in (13). However, in
the proposed approach, the new crossover factor, β, switches
between 0.1 and 0.9 depending on the fitness of the output of
the Modified Newton Raphson algorithm, hk∗ . As discussed
in Section II, the MNR algorithm will not converge when
the initial resistance distribution r0 is very different from rt.
When MNR does not converge, the output is very unstable and
can have chaotic values of 100 times that of rt. Thus, if h1

∗ is
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Fig. 3: The proposed system integrates the Modified Newton
Raphson algorithm into a traditional differential evolution
algorithm.

very different from rt, then hk∗ can be extremely inaccurate.
In which case, the new crossover factor β is defined as 0.1,
where minimal crossover occurs and most of the crossover
vector z will be comprised of values from the values of the
individual being analyzed in the population. The individuals in
the population have been constrained to have values between
[L D] and so the instability is controlled. This ensures that
chaotic solutions will not be stored throughout the generations.
Vice versa, if the output of MNR is acceptable, β is changed to
0.9 where significant crossover occurs and the new crossover
vector z will be made up of values from hk∗ . The output of
MNR is deemed acceptable or not by calling upon the fitness
function of (5). If the fitness value is above 0.1, then the output
is deemed unstable and β = 0.1 and if the fitness value is less
than 0.1 then β = 0.9. The overall procedure of the proposed
algorithm is summarized in a flowchart displayed in Fig. 3.

V. SIMULATION AND RESULTS

The forward problem is implemented in an electrical re-
sistor mesh of size 50 nodes by 50 nodes and 16 boundary
electrodes. A sequence of 16 distinct current patterns of 1 A
are injected in a given pair neighbouring electrodes, one pair at
a time, while the induced voltage at the remaining electrodes is
measured. In addition, to represent physical experimentation,
noise is introduced into the system. Each boundary voltage

20 Ω 60 Ω
20 Ω

60 Ω

Fig. 4: The image output of the true resistance distribution
is constructed from a 50 × 50 resistor grid and it shows a
concentrated mesh of resistors with a higher resistance (60 Ω)
than the rest of the resistors (20 Ω).

TABLE I: Simulations Parameters

Parameter DE Hybrid MNR
Population (π) 50 50 N.A.
Generations (γ) 3600 36 N.A.
Mutation factor (ψ) 0.8 0.8 N.A.
Crossover factors (ε, β) 0.1 0.1/0.9 N.A.
Iterations of MNR NA 7 7
Runs (ρ) 3 1 1

Note: N.A = Not Applicable

reading from the true distribution are injected with a random-
ized noise variation of 2%. The true distribution in the forward
problem is represented by Fig. 4. The majority of the true
distribution is constructed of 20 Ω resistors, where the middle
of the mesh has a concentrated mesh of resistors at 60 Ω. The
60 Ω resistors in the middle of the mesh represent the anomaly
within the medium that the EIT algorithms will attempt to
identify and locate. For calculating the boundary voltage
values of the true distribution, a custom script calculates the
boundary voltages and the values are verified with LTSpice
(electrical simulations software).

The inverse solution is modelled by an electrical grid of size
10 nodes by 10 nodes with 16 boundary electrodes. Current is
injected through neighbouring paired electrodes in the resistor
circuit, similar to Fig. 1 and voltage measurements are taken
across the remaining electrode pairs.

The Modified Newton Raphson algorithm is executed with
3 different initial resistance distributions, i.e., 30 Ω (closest
to true distribution), 70 Ω and 100 Ω. The results are then
compared with the results of the differential evolution as well
as the proposed algorithm, which do not rely on an accurate
initial estimate of the resistivity distribution. The parameters
for each of the simulations are listed in Table I and the
obtained least square error between the induced boundary
voltages in the measured and calculated models as defined
in (5) are displayed in Table II.

Looking at the fitness values of Table II, it is apparent that
the best solutions are generated by the hybrid method as well
as the Modified Newton Raphson when a 30 Ω resistance
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TABLE II: Simulated results. Fitness value defined in (5)

MNR
30 Ω

MNR
70 Ω

MNR
100 Ω

DE Hybrid

Fitness 0.167 60.72 386.8 82.9 0.199

distribution is used as the initial estimation. They yield the
lowest fitness results of all the simulations, with MNR at 0.167
and hybrid at 0.199. A low fitness value means that the solved
boundary voltage values of the 10 by 10 resistor grid closely
resemble that of the true measured boundary voltage values of
the 50 by 50 resistor grid. This is as expected since the MNR
algorithm with the 30 Ω initial distribution places it very close
to the true distribution. Therefore, a optimal solution is very
likely to converge.

Meanwhile, the solution generated from the MNR with a
70 Ω initial start is much worse than the solutions generated
from the 30 Ω initial distribution, with a fitness value of 60.72.
The solution generated from the 100 Ω initial start yielded
very inaccurate results, with a fitness of 386.8. This is also
expected as a very inaccurate initial estimation will lead to
inaccurate results or lack of convergence [16]. The traditional
differential evolution algorithm yielded a fitness value of 82.9,
much higher than the MNR at 30 Ω and 70 Ω and the hybrid
algorithm. It can be observed that by incorporating MNR into
the DE algorithm, the fitness value decreases significantly
when compared to the traditional DE algorithm. Given the
noise added to the voltage measurements, it can be concluded
that there is significant performance difference between the
MNR and the hybrid method. However, the MNR requires a
precise estimation of the resistivity distribution as its initial
guess, which is not always feasible in practice.

The final image output of the different simulations are
displayed in Fig. 5. It should be noted that the actual solved
resistance values are not exact values when compared to the
true distribution. For the generated solutions, the resistors
values are normalized by the maximum resistance value in
each solution and presented on a colored scale of 0 to 1.

As confirmed by Table II, the MNR and hybrid approaches
generated the best solutions. The two approaches are able
to identify the resistors concentrated in the center that had
higher resistance values. The 70 Ω estimation of MNR is
able to identify the higher resistance values in the center as
well, but with relatively higher background inconsistencies in
resistance values. The 100 Ω estimation of MNR does not
converge and thus is not able to find an overall distribution.
The differential evolution also does not converge as it cannot
identify the higher resistance values. The difference in values
were sufficient enough to identify the higher resistance values
in the middle of the mesh for the MNR and hybrid cases.

VI. CONCLUSION

Different inverse approaches for EIT are analyzed in this
paper and a new hybrid method integrating MNR into the

1

0

Fig. 5: The image output of each simulation is displayed,
where the values are normalized between 0 and 1. The true
distribution is constructed from a 50 × 50 resistor grid while
the inverse solutions are constructed from a 10 × 10 resistor
grid with 2% noise added to the boundary voltage readings.

differential evolution method is proposed. The performance
of the Modified Newton Raphson algorithm is compared to a
differential evolution algorithm as well as a differential evo-
lution algorithm integrated with Modified Newton Raphson.
The results indicate that the hybrid algorithm outperforms
the differential evolution algorithm and performs just as well
as a Modified Newton Raphson algorithm when the initial
resistance estimation was close to the true distribution. The
hybrid method does, however, require a longer processing time
when compared to the MNR algorithm.

The Modified Newton Raphson approach requires an accu-
rate initial estimation to begin the algorithm and therefore, it
is simulated with 30 Ω, 70 Ω and 100 Ω as the different initial
resistance distributions. The true distribution is composed of
mainly 20 Ω resistors, therefore, the initial estimation of 30 Ω
for the Modified Newton Raphson algorithm produced optimal
results. The other two estimations yielded subpar results.

The proposed hybrid algorithm is superior to the Modified
Newton Raphson as it does not require a single well estimated
guess to initialize the algorithm. The hybrid algorithm can
produce the same results as the Modified Newton Raphson
approach without any knowledge of the true distribution. Fur-
ther simulations are to be conducted to explore the results of a
more complex resistor grid. In addition, physical experiments
will follow to confirm the results produced in this paper.
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