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Abstract—Acoustoelectric impedance tomography (AET) is
a new non-invasive medical imaging procedure used to map
the electrical properties of biological tissues with higher spatial
resolution than traditional electrical impedance tomography
(EIT). It exploits the acoustoelectric effect where modulated
ultrasonic pressure changes the local tissue conductivity. This
provides additional information to reconstruct a tomographic
image, and has a stabilizing effect on an otherwise highly
unstable inverse problem.

In this paper, a novel approach to solving the AET inverse
problem for image reconstruction is proposed. In the algorithm,
the acoustoelectric effect is assumed to create small perturba-
tions in the local resistance of the medium under observation.
A lumped model consisting of a finite mesh of resistors
approximates the medium under observation, through which
boundary voltage differences between the excited and unexcited
medium are calculated. A variation of the Modified Newton
Raphson (MNR) algorithm is then proposed, where each pattern
in the algorithm is created from small perturbations of the
tissue conductivity. A total of eight simulation scenarios are
evaluated, where the conductivity perturbations are in the
order of 1%, 2.5% to 5% of the nominal tissue conductivity.
The algorithm can successfully reconstruct the images in the
presence of random noise. The obtained images are compared
against traditional EIT where the percentage error is calculated
for each simulated tomographic image. The simulation results
indicate that the proposed approach is superior to traditional
EIT as it constructs more distinct and high contrasting images
with less percentage error.

Index Terms—Electrical impedance tomography; Ultrasound
Imaging; Dual-Modality Imaging; Optimization; Imaging.

I. INTRODUCTION

Electrical impedance tomography (EIT) is a relatively fast,
inexpensive and non-invasive imaging procedure. It involves
placing electrodes on the surface of the medium being exam-
ined [1]. A pair of electrodes then inject electrical current into
the medium while the remaining pairs measure and record the
resulting boundary voltages. The unique voltage readings are
then used to construct a tomographic image of the medium
that represents the distribution of its electrical impedance
[2]. The use of EIT in medical procedures has been well
documented and its applications are vast [3]–[7]. Although
EIT is able to provide high contrast tomographic images,
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its inherent resolution is low due to its ill-posedness of the
mathematical inverse problem [2], [8].

Improving the resolution of EIT has been the focus of
extensive research over the past few decades. EIT may be
complemented with another imaging modality to construct
an improved tomographic image [8]. These include fusing
MRI and EIT images, developing magnetic resonance elec-
trical impedance tomography (MREIT), gamma densitometry
tomography (GDTEIT), ultrasound electrical impedance to-
mography (UEIT), and acoustic electrical tomography (AET)
[8]–[12]. These modalities are often referred to as multimodal
imaging, that is, the simultaneous production of signals for
more than one imaging technique.

On the other hand, hybrid imaging fuses two or more
imaging techniques into a single, new form of imaging that
exploits their coupled physical interaction. Acoustic electric
tomography (AET), for example, was developed as an im-
provement to EIT. The fundamental execution of AET is
similar to that of that of EIT. Electrical current is injected into
the medium via a pair of boundary electrodes and voltages
are measured across the remaining electrodes. An ultrasonic
wave is then introduced into the medium under observation
and as it propagates, the acoustic pressure elastically deforms
a part of the medium. This perturbation induces a small
change in the medium’s conductivity, in the range of 1% to
5%. This change in conductivity is recorded by the boundary
voltages via the peripheral electrodes. Similar to EIT, the
resulting unique boundary voltage readings are used to con-
struct a tomographic image of the internal conductivity [12].
This technique results in an increased number of boundary
measurements, and hence the ill-posedness of the problem is
reduced, leading to potentially higher resolution images [12].
There are various medical applications of hybrid imaging
utilizing both ultrasound and EIT. Soleimani performed a
study on ultrasound combined EIT for the application of
cryosurgery [13]. Other medical applications include lung
monitoring and breast tumour detection [14], [15]. The po-
tential applications of hybrid AET imaging is significant and
can be further extended to various other medical procedures
such as ultrasound focused ovarian cancer detection as well
as brachytherapy imaging [16], [17].

The conductivity reconstruction of AET has been solved
using various different approaches. Iterative methods using
Picard and Newton methods have been documented [18].
Liang et al. used an equality constraint method to solve
the reconstruction using a Lagrange-Newton approach [8].
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A common AET approach to reconstructing the conduc-
tivity distribution is using power densities [19], [20]. The
Levenberg Marquardt method for solving the power density
function has been documented in several research works [12],
[19], [21]. Its results have been proven to be successful in
several different scenarios. Adesokan et al. proposed using
a non-linear conjugate gradient optimization for solving the
power density [22] while an iterative procedure for solving
the power density function using Landweber iteration algo-
rithm is proposed by [23]. These reconstruction algorithms
utilize the resulting voltage information obtained from the
acoustic excitation directly in the inverse algorithms.

Other reconstruction methods use the spatial information
of the inclusion obtained form ultrasound images to sequen-
tially assist in the image reconstruction and convergence
in traditional EIT algorithms [24], [25]. In these methods,
the boundary voltages of the ultrasound excited medium
are not directly utilized in the inverse algorithm and it is
a multimodal imaging approach.

Although the aforementioned algorithms are capable of
producing tomographic AET images, they have their own
drawbacks. Solving the reconstruction problem using the
Levenberg Marquardt method is computationally complex
as it involves calculating a set of equations for each mea-
surement [12]. Moreover, reconstruction with a conductivity
contrast of greater than 5 may destabilize the system [12].
Similarly, the algorithm proposed in [19] requires solving
a set of weights during the reconstruction iterative process,
which proves to be computationally taxing. The methods
proposed in [24], [25] are successful in constructing an
accurate tomographic image, however, the boundary voltages
from the excited medium are not taken directly into the EIT
inverse algorithm. Such information could improve the ill-
posedness and resolution of EIT. The algorithms presented
in [18], [22], [23] are robust against noise and different
inclusion setups, however, their performance comparison to
other existing iterative algorithms have not been documented
thoroughly.

In this paper, a novel iterative procedure for solving AET
is proposed, specifically an equivalent lumped impedance
model of the medium is contracted for both the forward
and inverse problems and image reconstruction is achieved
through a Modified Newton Raphson algorithm (MNR).
The MNR algorithm is a robust and popular approach for
solving ill-posed inverse problems, especially for EIT [26].
Its performance against other existing inverse algorithms has
also been well documented [26]. The algorithm relies on
calculating a Jacobian matrix to update an initial conductivity
distribution in an iterative fashion until a predetermined end
condition has been reached [26]. The algorithm is relatively
efficient as it does not need to calculate a system of equations
for each AET measurement or a set of weights in the inverse
approach.

In the lumped model, the acoustoelectric effect is modelled
as a small localized change in one of the model elements,
of a group of elements. In the scope of this paper, this
change in tissue conductivity is assumed to be ideal, known,
and within the range observed in literature. Determining the
actual ultrasound/tissue interaction and pressure is beyond
the scope of this study. As the localized tissue conductivity

perturbations are steered across the medium, the proposed
algorithm calculates the resulting boundary voltages, which
are then subtracted from voltages measured in the absence of
acoustoelectric perturbations. The subtracted voltage values
for each perturbation are used in the MNR algorithm to
construct a tomographic image. Moreover, the scope of this
paper is a simulation study aimed at confirming the principle
of the method proposed. Future experiments will follow to
confirm the results of this study.

The contributions in this paper include the implementation
of Modified Newton Raphson using voltage difference values
to solve the problem of AET; and the different patterns used
in the MNR algorithm are the lumped ultrasonic excitation
patterns instead of traditional EIT electrical current injection
patterns. To the best of the author’s knowledge, such lumped
model combined with AET utilizing MNR has not been pro-
posed for AET. This paper is structured as follows: Section
II details the problem of traditional electrical impedance
tomography. It is then followed by the explanation of the
acoustoelectric effect from the ultrasound excitation. The
Modified Newton Raphson algorithm is outlined in Section
III. The simulations and the results are displayed in Sections
IV,V. The conclusion is presented last in Section VI.

II. ACOUSTOELECTRIC IMPEDANCE TOMOGRAPHY

In order to understand the proposed method for AET im-
age reconstruction, it is important to review the fundamental
solution of EIT.

A. Electrical Impedance Tomography
Let the medium under observation be defined as ζ. To

perform EIT, electrical current I(x⃗) is injected into ζ, where
x⃗ is the voxel position within the medium, and y⃗ are voxel
positions on the boundary of the medium. As a result of the
injected electrical current, the voltage distribution inside ζ is
described by U(x⃗). The voltages observed by the electrodes
on the boundary of ζ is termed as Ub(x⃗). The conductivity
distribution inside ζ is σ(x⃗). To execute both EIT and
AET, electrical current is injected in the medium through
its boundary ∂ζ, and the goal is to solve for σ(x⃗) [2], [6].

Solving the complete EIT problem usually involves a
forward and inverse solution [2]. In the forward solution,
the internal conductivity σ(x⃗) is known. The goal is to solve
for the boundary voltages Ub for each of the applied current
injections I(x⃗).:

Ub(y⃗) = f(I(y⃗), σ(x⃗)), ∀y⃗ ∈ ∂ζ ∧ x⃗ ∈ ζ. (1)

On the contrary, the boundary voltages Ub(x⃗) are known for
the inverse solution. The goal is to solve for the internal
conductivity values σ(x⃗):

σ(x⃗) = f−1(I(y⃗), Ub(y⃗)), ∀y⃗ ∈ ∂ζ ∧ x⃗ ∈ ζ. (2)

Oftentimes, there are far more unknown variables than
known variables in the mathematical formulation of the EIT
problem. Hence, the problem of EIT is severely ill-posed. To
solve the problem of EIT, the forward (1) and the inverse (2)
solutions are usually utilized in an alternate fashion in order
to reconstruct images in EIT [27]–[30]. In this paper, the
problem is expanded to account for variation in the medium
conductivity that result from an applied accoustic pressure.
This is know as the acoustoelectric effect.
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B. The Acoustoelectric Effect

The acoustoelectric effect (AE) describes the change in
conductivity within a medium when an ultrasonic pressure is
applied to it locally [31]. By defining the initial conductivity
of the medium as σ0, and the material specific AE coupling
constant as K [32], [33], the acoustoelectric effect can be
stated as [31]:

∆σ = −σ0K∆P, (3)

where ∆σ is conductivity change between the perturbed and
non-perturbed configurations and P is the amplitude of the
pressure waves.

To define the resulting voltage distribution from the acous-
toelectric effect, Uτ (tc) of the medium at time tc, the lead
field L and time varying current densities ι are established.
Using Ohm’s Law, U(tc) is defined as the volumetric integral
of L, ι and the initial medium conductivity σ0 [31]:

Uτ (tc) = (4)∫∫∫
(L(x, υ, ω) · ι(x, υ, ω, tc))σ0(x, υ, ω) dxdυdω.

The indices x, υ, and ω are the 3D voxel coordinates. By
removing the lead field for simplicity and substituting the
acoustoelectric effect from (3) into (4), the voltage can be
rewritten as:

Uτ =

∫ ∫ ∫
ι(σ0 −Kσ0∆P ) dxdυdω. (5)

Close examination of U reveals that the voltage can be
further divided into two specific voltages: ULF and UAE

[31]:
Uτ = ULF + UAE . (6)

In (6), ULF represent the voltage of the medium when
no acousto-electric effect is present and is a result of the
injected current. In contrast, UAE is the voltage when the
ultrasonic pressure propagates through the medium. Using
the previously defined terms in (4) and (6), the separate
voltages can be further refined as:

Uτ = ULF + UAE =∫ ∫ ∫
ισ0 dxdυdω −

∫ ∫ ∫
ιKσ0∆P dxdυdω. (7)

The boundary voltages from the excited medium, Uτ is
subtracted from the boundary voltages of the non-excited
medium U . The difference in voltage is used in the inverse
solution of MNR to solve for the reconstruction, as explained
in Section. III.

The approach of using voltage difference between the ex-
cited and non-excited medium provides an alternative method
of obtaining unique measurements for solving the inverse
algorithm. Conductivity perturbations in AET provide an
alternative to the current injection patterns of EIT [34]. The
ability to obtain sufficient unique voltage measurements with
different injection patterns in EIT in order to mitigate the ill-
posedness of the inverse problem is limited, whereas in the
proposed lump element model, there can be multiple varying
acoustic perturbation patterns. This provides the advantage
of generating much more unique voltage measurements to
mitigate the ill-posedness of the inverse problem.

v v

...

......

...

... ...A B

Fig. 1: Different group of resistors are excited using ultra-
sonic pressure as can be seen in B. The voltages are obtained
from the boundary of the mesh. The voltage differences are
taken from the boundary of an unexcited mesh (A) and an
excited mesh (B).

III. AET INVERSE PROBLEM VIA MODIFIED NEWTON
RAPHSON

To set up the inverse problem, a set of assumptions need
to be defined.

• Assumption 1: In (3), it is assumed that the medium
specific accoustoelectric coupling constant K is known.
This is a common assumption in AET [31];

• Assumption 2: The constant ∆P in (3) is known
beforehand.

• Assumption 3: The area within the medium under
observation, and the equivalent area in the lumped
model, that are subjected to conductivity changes due to
ultrasonic pressure are also known. With these assump-
tions, the inverse AET image reconstruction problem
can be defined.

In order to solve the AET inverse problem, it is first
necessary to discretize the medium as a finite lumped model.
A finite mesh of resistors is established to represent the
medium ζ as shown in Fig. 1. The resistances are labelled
as zβ with 1 ≤ β ≤ 2s2 − 2s where s is the total amount of
nodes in the resistor grid. An electrical current is applied to
a pair of mesh boundary nodes while the induced boundary
voltages are measured at n node pairs. In the figure, n = 1.

The algorithm begins by recording the n induced voltages
v0 ∈ Rn×1 observed in the absence of any ultrasonic
stimulation (Fig. 1 A). Then, the effect of a hypothetical
ultrasonic pressure applied to a predefined area of the tissue
results in a local change of the tissue resistivity and boundary
voltages (Fig. 1 B). All the n voltage are then remeasured.
If a number p of ultrasonic patterns is applied to different
areas of the tissue, one at a time, there are n × p unique
voltage measurements in the presence of ultrasonic pressure,
hereafter denoted as Vu ∈ Rn×p. The difference between the
perturbed and non-perturbed voltages can now be calculated
as:

V = Vu − v0 ◦ h (8)

where h1×p is a vector of ones, and ◦ denotes the Hadar-
mard product, allowing column-wise subtraction between Vu

and v0.
The objective of the algorithm is to determine the value

of the mesh resistors z such that the calculated voltage
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differences V̂ ∈ Rn×p obtained through the lumped model
approaches the measured voltages V. The voltage least square
error θ(z) is established according to [26] as:

θ(z) =
1

2

[
V̂(z)−V(ζ)

]T [
V̂(z)−V(ζ)

]
(9)

In the above, z ∈ R1×(2s2−2s) is a vector that holds all the
mesh resistors. For each excitation pattern, a lumped group of
resistors are excited via (3). The respective resistance values
are then updated by setting:

z = z0 ◦Hex. (10)

where the vector z0 ∈ R1×(2s2−2s) holds all the resistances
in the absence of ultrasonic pressure. The matrix Hex has
a value of 1 in every column, except for the columns
corresponding to the resistors being excited by ultrasound. In
those columns, the value becomes (1−K∆P ) to represent
the change in resistance as a result of (3).

The Modified Newton Raphson algorithm is an iterative
approach to solving non-linear ill-posed mathematical prob-
lems [6], [26]. In order to start the algorithm, an initial resis-
tance distribution is established zo. Through the algorithm,
the initial resistance distribution is updated via the iterations
of MNR:

zk+1 = zk +∆zk, (11)

where k represents the iteration index. The calculated update
resistance term, ∆zk, is added to zk to yield the updated
resistance vector zk+1 ∈ R1×(2s2−2s) at iteration k + 1.
The MNR algorithm will terminate once ∆zk becomes
insignificantly small, or if k reaches a predefined value.

Since the objective is to continuously update z such that
θ(z) → 0, (9) is to be differentiated with respect to zk and
set equal to zero [26]:

∂θ

∂zk
=

∂V̂T

∂zk
[V̂ −V] = 0, or (12)

θ′ = [V̂′]T [V̂ −V] = 0. (13)

In (13), the term V̂′ = ∂V̂/∂zk ∈ R(n×p)×2s2−2s is the
Jacobian matrix [26]. The Jacobian defines the rate of change
of each boundary voltage reading with respect to each of the
resistors in the finite mesh of Fig. 1. In matrix form, the
Jacobian is displayed as:

[V̂′] =



∂V̂1

∂z1
∂V̂1

∂z2
. . . ∂V̂1

∂z2s2−2s

∂V̂2

∂z1
∂V̂2

∂z2
. . . ∂V̂2

∂z2s2−2s

...
...

. . .
...

∂V̂n×p

∂z1
. . . . . .

∂V̂n×p

∂z2s2−2s

 . (14)

Since (13) is a non-linear function of zk, the equation is
rewritten by taking the Taylor Series Expansion about an
arbitrary point z = zk [26] to yield:

θ′ ≈ θ′(zk) + θ′′(zk)∆zk. (15)

in which θ′′ = ∂2V̂/∂z2 is the Hessian matrix [26], and it
can be represented as:

θ′′ ≈ [V̂′]T [V̂′]. (16)

Finally, the solution for ∆zk can then be calculated by

Fig. 2: The overall workflow of the MNR algorithm. The
iterative procedure repeats until a termination condition is
satisfied.

A B C

Fig. 3: In A, the baseline distribution is established with the
centre inclusion at 40 Ω and the background at 10 Ω. In B
and C, the tissue conductivity is perturbed vertically along
the mesh to simulate the acoustoelectric effect.

substituting (13) and (16) into (15) to yield:

∆zk = (17)

−
{
[V̂′(zk)]TV̂′(zk) + λW

}−1

[V̂′(zk)][V̂(zk)−V].

In (17) the Marquardt method is implemented to mitigate
the ill-conditioning [26], [35]. The matrix, W, is an identity
matrix multiplied by the scalar λ ∈ R+ → 0. Both terms
W and λ prevent the system from reaching singularity. The
smaller the λ value, the more accurate the inverse solution
is. The overall MNR procedure is schematized in Fig. 2.

The final solution will heavily depend on the initial
resistance estimation. In the study conducted by Murai
and Kagawa, it is claimed that a solution will converge
if |z0 − zt| < 10 [36], with zt being the true resistance
distribution.

IV. FORWARD AND INVERSE AET SIMULATION

The forward problem or the true conductivity distribu-
tion, is established on a mesh of 50×50 nodes in a square
fashion with 4,900 resistor elements, as shown in Fig. 3 A.
The true distribution has background values of 10 Ω and the
inclusion to be identified is configured at 40 Ω. The electrical
current is injected in a fixed location, entering the top left
corner of the conductivity mesh and leaving at the bottom
right corner. In total, voltages are measured at 13 distinct
points along the boundary of the medium using adjacent
measurement patterns [34]. A random noise of up to 2%
is introduced into the boundary voltage readings.

The acoustoelectric effect is modulated through 8 exci-
tation patterns. It is assumed that a hypothetical and ideal
unfocused ultrasonic wave changes the resistivity of a vertical
strip of resistors as shown in Fig. 3 B-C, covering from the
top of the mesh to the bottom of the mesh. The maximum
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change in resistivity used in the simulations, as given in
given in (3), varies from 1%, 2.5%, to 5%. The variance
percentages were selected as it corresponds to the level
observed experimentally in [37].

The inverse problem is performed on a mesh of 26×26
nodes with 1,300 resistor elements. A total of eight scenarios
are simulated: six AET simulations and two EIT simulation
for comparison. Scenarios 1 to 3: The AET simulations
are performed with local conductivity variations increasing
from 1%, 2.5% to 5% respectively. A large inclusion is
placed in the centre. Scenario 4: A pure traditional EIT
simulation solved with MNR with 8 current injection patterns
with 13 voltage measurements each on the centre inclusion
distribution. Scenarios 5 to 7: The AET simulations are
performed with local conductivity variations increasing from
1%, 2.5% to 5% respectively. A small inclusion is placed
in the bottom right corner. Scenario 8: A pure traditional
EIT simulation solved with MNR with 8 current injection
patterns with 13 voltage measurements each on the bottom
right inclusion distribution.

There is a total number of 104 unique voltage measure-
ments in both the AET simulations and EIT. For the MNR
algorithm, a total of k = 3 iterations are implemented with
1 × 10−11 < λ < 1 × 10−9. The results for the different
scenarios are shown in the following section.

V. SIMULATION RESULTS AND DISCUSSION

The simulation results are displayed in Fig. 4, where
the conductivity images are normalized on a scale of 0
to 1. The gradient of colours indicate the difference in
conductivity identified. In all of the AET simulations, the
proposed algorithm is proven to be effective while the mesh
is administered with different perturbation levels. The centre
inclusion of 40 Ω is identified successfully while contrasted
against the background of 10 Ω. Furthermore, the proposed
approach is robust against the injected noise of 2%.

In order to quantitatively compare the obtained tomo-
graphic images with their true distribution, the percentage
error (PE) is calculated. First, the true resistance distribution
is reconstructed using a 26x26 mesh as a baseline to allow
exact resistor comparison with the calculated resistance dis-
tribution. The error is then given as:

PE =

2s2−2s∑
j=1

|ẑj − ztj |
ztj

, (18)

where ẑ is the vector holding all calculated resistance val-
ues. The results in Table 1 show that the AET algorithm
outperforms traditional EIT as the PE values of all AET
Scenarios (1-3, 5-7) are lower than that of the traditional EIT
(Scenarios 4 and 8). In Scenarios 1-3, where the inclusion is
in the centre, AET is able to define an inclusion with sharp
boundaries. Similarly, in Scenarios 5-8, AET is again able to
define the corner inclusion with sharp boundaries even with
a smaller sized inclusion. In both Scenarios 4 and 8, EIT
is able to identify the inclusion, however, there is significant
noise in the reconstructed background. The higher percentage
error of the EIT reconstruction is a result of the noise present
in the background of the images.

TABLE I: Percentage error (PE) between the calculated and
true distribution of each simulated scenario (Sc).

1% AET 2.5% AET 5% AET EIT
Sc. 1 Sc. 2 Sc. 3 Sc. 4

PE 0.0824 0.0945 0.0891 0.1223

Sc. 5 Sc. 6 Sc. 7 Sc. 8

PE 0.0077 0.0124 0.0144 0.0183

VI. CONCLUSIONS

In this paper, a novel method of performing AET utilizing
a lumped element method with the Modified Newton Raph-
son technique is proposed. The resistance of different groups
of resistors in the lumped model are disturbed to simulate
the acoustoelectric effect, with an excitation level ranging
from 1%, 2.5% to 5%. The boundary voltages of the excited
medium is recorded under random noise. The voltage is then
subtracted from the boundary voltages of an identical but
unexcited medium. The conductivity disturbance patterns and
the voltage difference values are used in the MNR algorithm
to perform the image reconstruction. A variation of the MNR
for solving AET is proposed, where the local resistivity
distribution in the inverse problem is also altered to represent
the acoustoelectric effect.

The percentage error calculated for the final tomographic
images indicate that the proposed method is superior to tradi-
tional EIT. As can be observed from the results displayed, the
EIT reconstructed image yielded blurred concentration of the
inclusions, whereas the proposed AET algorithm provided
more distinct and high contrast images of the inclusion. For
future studies, additional excitation levels as well as physical
experiments will be conducted to confirm the results provided
in this paper.
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respectively. Scenarios 4 and 8 are traditional EIT simulations solved with MNR. All simulations are able to successfully
construct a conductivity distribution identifying the focal inclusion.
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