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Indoor Temporally Constrained Instantaneous
Ego-Motion Estimation using 4D Doppler Radar
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Abstract—Indoor ego-motion estimation using millimetre-wave
Doppler sensors is challenging due to high levels of outliers,
primarily caused by multi-path reflections. A standard approach
to mitigate these outliers is RANdom SAmpling Consensus
(RANSAC), where the ego-motion model is derived from data
collected at a single time step, overlooking the continuity between
successive measurements. In this paper, we demonstrate that
leveraging temporal relationships across multiple time steps can
improve ego-motion estimation accuracy in indoor environments.
We introduce two novel RANSAC-based methods that incorpo-
rate a weighted sliding window to enhance ego-motion estima-
tion: Temporal Sample Consensus (TEMPSAC) and Temporally
Weighted Least-Squares (TWLSQ). In TEMPSAC, samples are
selected with a probability weighted by their temporal proximity,
and the velocity model is generated using least squares regression
(LSQ). In TWLSQ, samples are uniformly selected, but the
velocity model is parameterized with a temporally weighted LSQ.
Both methods calculate the platform’s motion by prioritizing
temporally consistent inliers. Experimental validation of 18
indoor trajectories shows an average position accuracy improve-
ment of 27% compared to previous RANSAC-based ego-motion
implementations. The results demonstrate the effectiveness of
incorporating temporal information into mmWave-based ego-
motion estimation.

Index Terms—Ego-motion, mmWave, weighted RANSAC,
weighted least-squares, sliding window, temporally constrained.

I. INTRODUCTION

GO-MOTION estimation is the process of calculating a

sensing platform’s motion relative to its environment. The
motion the sensor observes is either caused by the sensor’s self
(ego) motion or by objects moving in the sensor’s environment.
When the environment is static, this relative motion is used to
infer the platform’s position over time [1].

In mobile robotics, sensor-on-chip frequency modulated
continuous wave (FMCW) radar in the millimetre wave band-
width (mmWave sensor) have gained popularity for ego-
motion estimation [2]. Their low-cost, and small form factor
make them a favourable option for designers [3], [4]. In
addition, they leverage the Doppler effect to measure the
velocity of objects [5] and their wavelength allows them to
operate in low visibility conditions like smoke, dust, or fog,
where sensors like LIDAR and cameras typically fail [6]—[8].

Despite these advantages, mmWave sensor measurements
have two key drawbacks. The first drawback is their high
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Fig. 1. Multi-path reflection noise. A) The multi-path wave is perceived by
the sensor as a reflection from behind the rock, not the rock itself, generating
a ghost point. B) A 2D mmWave point cloud with ghost points due to multi-
path reflections circled in red. These ghost points must be removed before
estimating the platform’s motion.

level of noise caused by specular (mirror-like) reflections
[9], diffraction [10], and multi-path reflections. Multi-path
reflections occur when the mmWave sensor’s transmitted sig-
nal is reflected off multiple objects before returning to the
sensor, as shown in Fig. 1 A). These multi-path reflections
result in “ghost points”, which act as outliers within the
measurement cloud. Fig. 1 B) shows an example of a 2D
mmWave point cloud, highlighting the high number of outliers
present. In severe multi-path scenarios (i.e., hallway corners),
these outliers can account for over 75% of samples within
the measurement cloud [9], [11]. The second drawback is that
mmWave point clouds are sparse, often containing two orders
of magnitude fewer points than a 2D-LIDAR scan [11]. These
drawbacks compound to result in a high ratio of outliers to
inliers severely impacting ego-motion estimation.

To address these challenges for 3-degrees-of-freedom
(DOF) (two translations with one in-plane rotation), re-
searchers developed methods of estimating ego-motion using a
single measurement. These “instantaneous” methods leverage
the Doppler velocity and angle of arrival of static objects to
infer the sensor’s motion [12]-[14]. For each measurement
the following 3 iterative steps are conducted: 1) fit a velocity
model to a subset of samples within the measurement, 2) use
the model to remove outliers, and 3) rerun step 1) without
outliers to refine the model. Once the model is parametrized,
the velocity is integrated to calculate the sensor’s motion.

To remove measurement outliers during velocity model
fitting, different algorithms have been proposed. A commonly
used algorithm is the random sample consensus (RANSAC),
an iterative model fitting algorithm designed for data contain-
ing outliers [12], [14]-[18]. For each measurement, RANSAC
randomly selects several Doppler velocities to fit the model.
Then the error between the model’s estimated Doppler velocity
and the measured Doppler velocity is calculated, and based on
this error, samples are categorized as inliers or outliers. The
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process of selecting samples, fitting the model, and calculating
the error is then repeated a set number of times. The model
with the largest number of inliers and lowest error is selected.
However, the accuracy of these methods heavily depends on
the model’s ability to correctly identify and reject outliers [13].
With a large number of outliers, the velocity estimate may not
converge to the sensor’s true velocity.

To mitigate this issue, our previous paper [19] proposed a
temporally weighted sliding window. By incorporating tech-
niques from LIDAR ego-motion ([20]) to an instantaneous
ego-motion framework, the ego-motion accuracy was im-
proved by over 19.5% compared to [12]. However, if 3-DOF
estimation methods are used for platforms experiencing 6-
DOF motion (three translations and three rotations) such as
robots in rough terrains, drones, and wearables, the estimate
cannot converge to the correct motion [21].

In this paper, we propose an extended formulation of
the methods presented in [19], Temporal Sampling Consen-
sus (TEMPSAC) and Temporally Weighted Least Squares
(TWLSQ), for platforms experiencing 6-DOF motion. Both
methods estimate ego-motion over a temporally weighted
sliding window, as shown on the left in Fig 2. The sliding
window is a first-in-first out buffer where each radar point
cloud measurement is assigned a weight based on its temporal
location. These point clouds are then concatenated together,
and the following steps are used to calculate the ego-motion:
1) TEMPSAC selects three samples from the sliding window
using a temporally weighted random selection, biasing model
selection in time, as seen in the top of Fig. 2. Then least-
squares regression (LSQ) is used to fit the 6-DOF Doppler
velocity model to the three samples. In contrast, in TWLSQ
all samples in the sliding window having an equal likelihood of
being selected. The three samples selected are then used to fit
the 6-DOF Doppler velocity model weighted-LSQ (WLSQ),
biasing model fitting in time, as seen in the bottom of Fig.
2. 2) For both methods the error between the fitted model
and the measured Doppler values is calculated, and based on
this error, samples are categorized as inliers or outliers. 3) If
the number of inliers is above a set threshold the model is
re-calculated over all inliers, using LSQ for TEMPSAC, and
WLSQ for TWLSQ. Then the average error between the model
and the inliers is calculated. The process of selecting samples,
fitting the model, and calculating the error is then repeated a
set number of times. Then the model having the lowest error
is selected as the ego-motion estimation.

The proposed methods improve estimation accuracy by
concatenating multiple point clouds. Thereby, the regions of
the point cloud corresponding to the true sensor velocity
become densely populated with inliers, and the outliers stay
randomly scattered throughout the sliding window. Therefore,
the probability that samples from the true sensor velocity
regions are selected to fit the Doppler velocity model is
higher, leading to better initial guesses and therefore, improved
convergence.

This paper makes the following major contributions:

o To the best of the authors’ knowledge, this is the first ap-

plication of a temporally weighted sliding window for 6-
DOF ego-motion estimation using radar data. While prior

studies have achieved 6-DOF estimation with radar, they
rely on expensive sensors, and complex sensor fusion. In
contrast, this work employs a single low-cost sensor-on-
chip FMCW mmWave sensor for real-time localization.
o The benefits of a sliding window were directly evaluated
by implementing the estimation method from [22] in two
versions: one with a sliding window and one without.
Results demonstrate that the sliding window improves
performance over the baseline in 99.94% of evaluations.
o The results from our prior work on 3-DOF ego-motion es-
timation were replicated with an additional 15 trajectories
and compared to two additional state-of-the-art methods,
demonstrating the effectiveness of the proposed approach.

The paper is organized as follows. Section II summarizes the
related work. Section III-A presents the theoretical formulation
for 3-DOF ego-motion estimation assuming ideal data. Section
III-B extends this formulation to 6-DOF. Section IV presents
how mmWave measurements are filtered, with Section IV-A
providing an overview of RANSAC filtering. Section IV-C &
Section IV-D present the proposed methods for ego-motion
estimation. In Section VI the methods under test (MUT) are
experimentally validated over 1900 evaluations across four
unique settings (indoor room, indoor hallways, large open
underground mines, and narrow mine passageways), and the
results compared to recent state-of-the-art methods [23], [24]
The proposed algorithms are publicly available'.

II. RELATED WORK

To address the challenges related to multi-path reflections,
various methods have been proposed. To review them, we
assume that the mmWave sensor provides a measurement
cloud of samples, and each sample contains the distance
to a reflection point, the angle of arrival, and the Doppler
velocity. The process of estimating these quantities from the
transmitted and reflected mmWave signals is beyond the scope
of this paper. However, interested readers are directed to
the Texas Instruments fundamentals of mmWave sensors in
[5]. Additionally, discussion of advanced signal processing
techniques including feature recognition and machine learning
are presented in [25]. As for methods estimating ego-motion,
they can be classified as indirect or direct [26]. The indirect
methods use radar images or point clouds for registration,
whereas the direct methods forgo registration. The registration
of measurements solves for the spatial transformation that
aligns them, and is well explored in literature [20], [27].

A. 3-DOF Techniques

1) Indirect Ego-motion Estimation: For radar images or
point clouds, registration is done using computer vision tech-
niques such as SIFT [28], FAST [29], DBSCAN [30], or
MSER [31] to identify key features within the measurement.
These features are used to solve for the spatial transfor-
mation [32]-[34]. However, these techniques cannot handle
high levels of outliers. The authors of [35], [36] used the
radar’s power-range spectra to filter outliers before point cloud

Uhttps://github.com/samuelLovett/tempEgo3D.git
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Fig. 2. The proposed ego-motion estimation methods. Measurements are placed within the sliding window and then combined. In TEMPSAC, samples are
selected based on a temporally weighted probability and then the velocity model is generated using LSQ. In TWLSQ, the samples are selected having a
uniform probability, but the model is parameterized with a temporally weighted LSQ. The motion of the platform is then calculated for both methods.

creation. While registration improved, identifying key features
is still an issue, especially in uniform environments [35].

To sidestep the challenge of identifying features entirely, the
Fourier-Mellin Transform can register radar images directly
[37]. However, it requires monetarily expensive radar that
creates dense 360° images. For cheaper radar, the data sparsity
problem can be alleviated by using a Convolutional Generative
Adversarial Network (CGAN) to create LIDAR like point
clouds [11]. The CGAN is trained on both LIDAR and radar
point clouds, and once finished only the radar is needed for
perception, with the LIDAR like clouds used for registration.

2) Direct Ego-motion Estimation: In [14] the instantaneous
strategy introduced in Section I was adapted for imaging radar.
The algorithm fits a polynomial curve directly to the radar
image to estimate the velocity model rather than using LSQ.
Separately, the work in [12] was extended to use multiple radar
sensors in [13]. In the extended work, RANSAC was replaced
by Maximum-Likelihood Sampling Consensus (MLESAC) to
maximize the solution’s log likelihood. But both solutions are
still limited by the number of outliers in a measurement. With
too many outliers present, the estimates may not converge.

B. 6-DOF Techniques

The following is a description of the related 6-DOF machine
learning and direct ego-motion estimation techniques, other
techniques like feature-based methods, are reviewed in [8].

1) Machine Learning Techniques: To obtain reliable ego-
motion estimates in 6-DOF machine learning (ML) is often
used. In [38], a dense neural network (NN) and a convo-
Iutional NN were used to localize a human from a static
mmWave generated point cloud. The networks independently
downsample the cluttered and outlier filled point clouds to a
single point, more accurately estimating the person’s location.
The results show an improved localization accuracy by 88%
compared to localizing the person by averaging all samples

in the cloud. However, the results may not generalize to a
moving scenario. Other machine learning techniques offer an
end-to-end solution to the registration and mapping problem.
RadarLoc uses a NN with geometric constraints between radar
measurements to improve localization accuracy [39]. Whereas,
Milli-RIO uses an unscented Kalman filter to fuse the data
from a mmWave sensor and an Inertial Measurement Unit
(IMU) before utilizing a long-term short-term memory motion
model to estimate the ego-motion [40]. On the other hand,
MilliEgo fuses data from a mmWave radar and an IMU
using a multi-modal sensor fusion network, achieving real-
time estimation performance [9]. While the results of these
ML methods are impressive, they require costly computations,
large amounts of data, and their ability to generalize to new
locations is limited.

2) Direct Ego-motion Estimation: Instead of using machine
learning, ego motion estimation can be posed as a state
estimation problem [17], [23], [24], [41]. In [23], a hybrid
direct | indirect approach is used where an iterated Kalman
filter combines the indirect ego-motion estimates from radar
image registration, with the direct estimates from an IMU
and the graduated non-convexity method (an alternative to
RANSAC [42]) to estimate the platform’s motion. The results,
validated using in-house data and the ColoRadar dataset [43],
show metre level accuracy. However, this method is only
applicable to imaging radar, which generates a larger number
of samples at a higher resolution than low-cost radar sensors.

As an alternative to imaging radar, a sliding window of
sparse measurements from a low-cost mmWave sensors and
IMU can be used [41]. The window is batch optimized,
jointly estimating the platform’s states using the Doppler data
and applying motion constraints from the IMU. This method
outperformed the Intel Realsense stereo camera’s odometry
output. To estimate ego-motion without a sliding window, a
hybrid direct / indirect approach is used in [24]. Modelling
the measurement uncertainty of the mmWave and the IMU



improves velocity estimation and point cloud registration.
However, current research shows that for a mmWave sensor
and an IMU, direct methods will outperform indirect meth-
ods [44]. Alternatively, two radar sensors can be mounted
orthogonally from one another (i.e., one facing forward and
the other sensor facing the ground), increasing the number
of samples per point cloud [17], and outperforming [9], [45].
However, all the above methods require the Jacobean to be
calculated, which can be computationally demanding and time-
consuming.

A single radar sensor can be used for ego-motion estimation
by replacing the original sinusoidal velocity relationship pre-
sented in [12] with a sinusoidal surface model [22]. The outlier
rejection is conducted using MLESAC, and the model was fit
using orthogonal distance regression (ODR). ODR minimizes
the orthogonal distances (error) between the measurement
and model along all variables, unlike LSQ [46]. This better
accounts for the measurement uncertainty inherent to mmWave
sensors [13], [22]. The ODR formulated in [22] is a nonlinear
optimization problem requiring the Jacobian to be computed,
which can be difficult and time-consuming. As with [12], this
estimate diverges from the true motion if the measurement has
a high number of outliers.

IIT. INSTANTANEOUS EGO-MOTION ESTIMATION

The following subsections detail the theoretical foundation
of ego-motion estimation for 3-DOF motion (III-A) and 6-
DOF motion (III-B). These sections assume that the radar
measurements are outlier free point clouds (containing only
static samples and no multi-path ghost points).

Hereafter a matrix is written in bold uppercase, a vector
in bold lowercase, a scalar in unbolded lowercase, and their
superscript defines the reference frame in which they are being
expressed. Further, the sensing platform in this section is
equipped with a mmWave sensor, and three coordinate frames
defined as shown in Fig. 3A. The fixed world reference frame
RF,, is where the ego-motion of the platform’s body frame
RF} is observed. Attached to the RFj, is the sensor reference
frame RF; where the mmWave measurements are generated.
As the mmWave sensor moves in a static environment, it can
equivalently be represented as a stationary mmWave sensor
with moving environment. Using this representation moving
forward, the environment has a relative motion equal and
opposite to the sensor’s original motion.

A. Three Degrees-of-Freedom Ego Motion Estimation

For a given measurement index ¢, a mmWave point cloud
*M; is defined as a collection of a; samples °*pj—1,. . g,
measured at ¢ such that

*M; = [*p1 *Pa, | ey
s s s T
p; =["0; °va,] 2)
where ®6; is the angular location and ®vg; is the Doppler
speed of the j** point °p; in RF, respectively, as illustrated

in Fig. 3A. The Doppler speed “vq, is the component of
the object’s velocity (-°vg) in the radial direction. In other

Outlier ®
Object ®

Fig. 3. A) Doppler velocity measurement ®vg4, from a mobile platform
moving with speed Svgs at an angle °« with respect to (w.r.t) °x. Ati =1
and ¢ = 2, the sensor measures *vg, and °vg,, respectively, in the sensor
reference frame RFs along ®6 w.r.t. *x. The orientation of the body reference
frame RF}, w.r.t to the world reference frame RF,,, and of RFs w.rt
RF,, are given by “¢ and °3, respectively. B) Example of a mmWave
measurement *IM; with all static samples shown in black and outlier samples
shown in red. In RFs objects appear moving with velocity —%vs. Here the
¢ and j subscripts have been omitted for readability. C) Samples from B)
are viewed in the *6-*v; domain. The inlier samples fit a sinusoidal curve
Szfdj = —5v,, cos (°0; — Sa;) used to estimate the platform’s velocity.

words, the component along the line projecting from the
object to the centre of RF, at the angle °#; with respect
to the horizontal axis *x of RF. As the platform moves
through the environment with a constant speed, the measured
Doppler speed of static objects will change depending on
their location. This is shown in Fig. 3A by the snapshots
of the platform at measurement index ¢ = 1 and ¢ = 2.
When multiple objects are observed within one measurement,
like the black circles in Fig. 3B, the Doppler speed has a
sinusoidal relationship with the sensor’s speed ‘vs [12]. By
transforming these measurements from the °x-°y domain to
the °6-°v4 domain, as in Fig. 3C, the object’s Doppler speed
can be modelled as,

Say, — _S sO. _
Vg, = —vg, cos (°0;

*a;) 3)
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Fig. 4. A) Example of °p; and °v;s in RFs. RF} and RF,, follow the same
structure as in Fig. 3A, however, now having an additional axis (°z) sticking
out of the page. B) Cloud *M; of all samples measured at measurement index
4 from objects (black) and outliers (red). In RFs objects appear moving with
velocity —Svs. For readability, only the ®*z—®y axes are shown. C) The cosine
surface from (12) plotted along side *M; in the *6-*y-Sv; domain. The
object samples (black) fit the cosine surface, whereas the false measurements
(red) do not.

where Sﬁdj is the estimated Doppler speed of the model, which
is parameterized using °«; and ®vg,. Here, ®«; is the angular
direction of the sensor’s speed v, at measurement index <.
Expanding (3) the model becomes,

Svg, = s, [cos(*0;) cos(*a;) + sin(*6;) sin(®ev;)] . (4)

To solve for the unknown ®«; and *v,, parameters in (3),
Eq. (4) can be reformulated as a matrix equation:

5V, cos®f; sin®6;
s S .
_ . . v, cos(®ay;) 5)
= : : Su. sin(®ou
vs, sin(®*ay;)
s .80 . i SO .
Vd; cos’f; sin’f;

containing all objects j = 1,...,a; in *M;, and solved using
the measured Doppler velocities via LSQ. The resulting “a;
and the sensor speed °vg, are then converted to the Cartesian
vector, °v,,. In order to calculate the motion of the platform,

°vs, must be transformed into RF,, through a series of
homogeneous transformations,

wy,, = “Hy, "Hyov, ©6)

where *v,, = [*v,, 1], PH, is the homogeneous trans-
formation from RFj to RF, governed by rotation angle
B between *x and ’x about *x x °y, and “Hj,, is the
homogeneous transformation from RF,, to RF} governed by
the rotation angle “¢; between ’x and “x about “x x “y at
i (i.e, the platform’s orientation in RF),, see Fig. 3A).

As all quantities are now in the world coordinate frame
and the only velocity left is the sensor velocity “v,, moving
forward the superscripts and subscripts are dropped for conve-
nience. With the sensor velocity v; known, all that is needed
to estimate the platform’s change in pose (Ag;) is the change
in time between the current and past measurement (i.e., At;
=t; — t;_1). Therefore,

Ag = [vi- At ¢ @)

The platform’s current displacement is the sum of all prior
relative displacements (i.e., v;-At;) from the first measurement
index f = 1 to the current measurement index i,

d; = va-Atf. (8)
f=1

The absolute pose estimate of the platform g; is defined as
g =1[d & . )

The series of absolute pose estimates from measurement f to
1 represents the estimated trajectory the platform followed.

B. Six Degrees-of-Freedom Ego Motion Estimation

The mmWave point clouds is now redefined as MM,

*M; = [*p1 (10)

(1)

where °0; is the azimuth angle, °v; is the elevation angle and
“vg, is the 1D Doppler velocity of the 4" point °p; in RF,
respectively, as illustrated in Fig. 4A. The Doppler velocity
vg; is the component of the object’s velocity (-°v,) in the
radial direction. In other words, the component along the line
projecting from the object to the centre of RF at azimuth °0;
and elevation °v;. “0; is defined with respect to the horizontal
axis °x and spans the °x-°y plane of RF, while ®v; is defined
with respect to °0; and spans the °0;-°z plane of RF. As
the platform moves through the environment with a constant
velocity, the measured Doppler velocity of static objects will
change as their relative location changes [12] [19]. In Section
III-A this relationship is sinusoidal in nature, however, for
motion in 6-DOF it is governed by a sinusoidal surface. By
transforming the measurement from Cartesian (°x-°y-°z) to the
azimuth-elevation-Doppler domain (°#-*vy-°v,), as in Fig. 4C
the object’s Doppler velocity can be modelled as,

*Pa, |
pj =0 *v “vg)"

SOéz')

—%vg, sin(®y;) sin(®n;)

vg;, = —"vs, cos(*;) cos(°n;) cos (°0; — (12)



where Sﬁd]. is the estimated Doppler velocity of the model,
which is parameterized using *n;, *cv;, and *v,,. Here, *n; and
Sa; are the angular directions of the sensor’s velocity *vg, at
measurement index ¢. Expanding (12) the model becomes,
Svg, = —*vs,[cos(*y;) cos(*n;) cos(°6;) cos(Pav; )+
cos(%y;) cos(®n;) sin(®0;) sin(®ay)+  (13)
sin(®v;) sin(*n;)].
The first term corresponds to the *x-component of the Doppler
velocity, whereas the second and third term correspond to the
Sy and °z-component, respectively.
To solve for the unknown °7;, *a; and *v,, parameters in
(12), Eq. (13) can be reformulated as a matrix equation:

V4, cos(®y1) cos(®01) cos(®y1)sin(®61) sin(®v1)

Vg, cos(®vy;) cos(®8;) cos(®y;)sin(®°;) sin(®y;)

—3vs cos(®*n;) cos(®a;)
—Svg cos(®n;) sin(®«;)
—Sg sin(®n;)

(14
containing all objects j = 1,...,a; in *M;. (14) is solved via
regression using the measured angles and Doppler velocities.
The resulting ®n;, *a; and the sensor velocity ®v,, are then
converted to the Cartesian vector, *v,,. Next, to calculate the
motion of the platform, ®vs, must be transformed into RF,,
through a series of homogeneous transformations,

wv,, = "Hy,"Hy5v,, (15)

where *v,, = [*v,, 1], H, is the homogeneous trans-
formation from RF} to RF, governed by the rotation with
respect to RF}, which aligns RFy, with RF, and “Hy, is the
homogeneous transformation from RF,, to RF} governed by
the rotation with respect to RF;, which aligns RF,, with RF}
at 7 (see Fig. 4A).

As all quantities are now in the world coordinate frame and
the only velocity left is the sensor velocity “vg, in the rest
of this section the superscripts and subscripts are dropped for
convenience. With the sensor velocity v; known and given
the change in time between the current and past measurement
(i.e., At; = t; —t;_1), the platform’s change in pose (Ag;) is:

Agi=[vi- A q)”, (16)
and q; is the platform’s current orientation as a quaternion.
The platform’s current displacement is then calculated as in
(8), and the absolute pose estimate of the platform g; is

g =l q. (17)

The series of absolute pose estimates from the first mea-
surement f to ¢ represents the estimated trajectory followed.

IV. FILTERING USING RANDOM SAMPLE CONSENSUS

The previous section assumed that all samples are inliers
(static and not ghost points). When measurements contain out-
liers filtering is required to accurately to fit the velocity model.
The following subsections present an overview of the proposed
filtering methods. Subsection IV-A gives a brief overview

of RANSAC filtering, Subsection IV-B defines the proposed
temporally weighted sliding window, and Subsection IV-C and
IV-D describes how the temporally weighted sliding window
is utilized within a RANSAC framework for the proposed fil-
tering methods, Temporal Sampling Consensus (TEMPSAC),
and Temporally Weighted Least-Squares (TWLSQ), for ego-
motion estimation respectively. The presented formulations
combine the notation and variables for the 3-DOF and 6-DOF
case. The cases are distinguished by the dimension of the point
being used °p;.

A. Random Sample Consensus (RANSAC)

RANSAC is a popular model estimation algorithm robust
to data with many outliers [15], [47]. RANSAC relies on
a hypothesize-and-verify approach, repeatedly estimating the
model based on randomly selected samples [48]. This ap-
proach allows for RANSAC to globally search the estimation
space for the best solution instead of iteratively improving
a single local solution, like gradient descent. RANSAC has
three main steps, 1) estimate model parameters, 2) partition
data, and 3) determine best partition and refit model.

Step 1 — Estimate model parameters: Given a measurement
*M; of a; samples °p;, a random selection of n samples
from *MM; can be used to find an initial estimate of the sensor
velocity by solving (5) or (14) through LSQ regression [15].
For a cosine curve, the minimum number of samples to fit the
curve i1s n = 2. Whereas for a cosine surface, the minimum
number of samples to fit the curve is n = 3 [22].

The random selection of an entry °p; is governed by the
uniform probability distribution such that,

Pr(°p;) = U[1, ail, (18)

where Pr(-) is the probability function of a random variable.

Step 2 — Partition the data: For a point °p;—1,..
the error e; between the measured point’s Doppler speed *vg;
and the speed estimated from the model fit in Step 1 Svq; is,

e; = (S’Udj — sUAdj)z. (19)

A point °p; is considered an inlier if the error is below a
predefined threshold ¢, that is:

inliers = {°pj | e; < e}. (20)

The number of inliers c is then counted. If c is larger than a
predefined threshold p, then the algorithm proceeds to Step 3,
otherwise it goes back to Step 1.

Step 3 — Determine best partition and refit model: LSQ
is then repeated to update the parameters in (3) or (12) using
all identified inliers. The error in (19) is re-evaluated for all
inliers. The quality of the model is calculated as the mean
error of all inliers:

C
1
e:fE €
¢ 4 J
j=1

This process is repeated for k initial estimates. The model
parameters that result in the lowest error parametrizes (3) and
(12), which is used to find the platform’s motion *d,.

*pj € inliers. 21
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Fig. 5. A family of temporal weight curves for a sliding window length of
m = 3 with A = 0 (blue), A = 0.5 (orange), and A = 1 (green). The
solid lines, and dashed lines are calculated using (25), and (26), respectively.
The dots along each curve correspond to the weight assigned to each sliding
window index (z). With ¢ = 3 being the newest measurement and ¢ = 1
the oldest. Comparing the A = 0.5 curves, the solid curve where w/ is not
normalized has a larger difference between each weight value.

B. Temporally Weighted Sliding Window

As shown in [19], by estimating ego-motion over a sliding
window, the temporal dependence of inlier samples and the
temporal independence of outlier samples between measure-
ments can be leveraged to improve ego-motion estimation.
The first-in-first-out sliding window SW is defined as the set
of m recent measurements, as shown on the left of Fig. 2.
Henceforth, 7 will be used as the index within SW such that,

SW ={"Miz, ..., *Mi—n} 22)

where ¢ = 0 is the oldest measurement and 7 = m the newest
measurement. Further, SW is also the superset containing
all samples *pj—1,..q, V °*M; € SW, therefore SW can
equivalently be defined as the set of all samples

SW = {spla D) Spusw7} (23)

where ag, = >0 @i

However, by calculating ego-motion over SW a time delay
is introduced into the estimation. To account for this and
ensure that the proposed methods respond quickly to changes
in motion, a temporal weighting w; is applied to each mea-
surement within SW such that equation (2) and (10) become

wj

(24)

w)]" & py =0 v, wi]

J

pj = [0 v

vV *M,; € SW,

for the 3-DOF and 6-DOF case respectively. This index
dependent weight is calculated as,

w; = A" A€ [0,1] (25)

where 0 < A < 1 is the user defined fixed forgetting factor
as in [49]. As X goes from 0 to 1, w; goes from placing all
the weight on the most recent measurement to weighting all
measurements equally, as shown in Fig. 5.

C. Ego-Motion Estimation Using Temporal Sampling Consen-
sus (TEMPSAC)

The first proposed solution is Temporal Sampling Consen-
sus (TEMPSAC), a RANSAC variant which estimates the ve-
locity across the sliding window and normalizes the temporal
weights to favour model generation from newer measurements
in time. The normalized weights wg are calculated as,

w/ /\mfi
AT

TEMPSAC follows the same three-step format as RANSAC,

Step 1 — Estimate model parameters: Given the set SW
from (23) containing asw samples *p;, n samples are randomly
selected and used to find an initial estimate of the sensor
velocity by solving (5) or (14) through LSQ regression. In
contrast to RANSAC the random selection of an entry °p; is
now governed by the wj,

Ae0,1] (26)

w/

Pr(°p;) = j

vV °M,; € SW. (27)

With the weights normalized w) can be thought of as the
probability of remembering a measurement *M; from SW
i.e., Pr(M = *M;) = w}. This probability distribution, shown
in Fig. 5 by the dashed lines, and is governed by (25), biasing
TEMPSAC to generate models from the samples in more
recent measurements.

Step 2 — Partition the data: For a point °pj—_1,.. 4, € SW,
the error e; between the measured point’s Doppler velocity
Sqdj and the velocity estimated from the model fit in Step 1
Svg; 1s given by (19). *pj=1,.a,, 1s an inlier if e; < €. If the
number of inliers ¢ is larger than p the algorithm proceeds to
Step 3, otherwise a new model is generated in Step 1.

Step 3 — Determine the best partition and refit the model:
With the outliers now discarded, the estimated model (12) is
improved by recomputing LSQ and then (19) is re-evaluated.
The quality of the model is calculated as (21), and the model
with the lowest error after k initial estimates parametrizes (3)
or (12) and is used to find the platform’s motion “d;.

D. Ego-Motion Estimation Using Temporally Weighted Least
Squares (TWLSQ)

The second proposed solution is Temporally Weighted Least
Squares (TWLSQ), another RANSAC variant which estimates
the velocity across a sliding window. In TEMPSAC a weighted
random selection is used to bias the initial model estimate
in time, whereas TWLSQ’s uniform selection generates an
initial guess where successive measurements overlap, as at
the bottom of the cosine surface in Fig. 4 C). This biases
the initial guess to be consistent with the motion experienced
across the sliding window. But to ensure that the estimates
do not lag behind the true motion, the temporal weights
w,; are used to bias the regression steps. With (25) is no
longer normalized as in [19], the difference in weight for each
measurement in the sliding window is larger, as seen in Fig.5.
The implication being that weights will now have a greater
impact on the WLSQ stages of TWLSQ. With more weight
placed on the most recent measurements, the regression will



more closely fit the newest inliers which most closely reflect
the sensing platform’s current motion.

TWLSQ follows the same three-step format as RANSAC,

Step 1 — Estimate model parameters: Given the set SW
containing asy samples °p;, a random selection of n samples
can be used to find the sensor velocity by solving (5) or
(14) through a weighted-LSQ (WLSQ) regression. The random
selection of samples is governed by (18).

Step 2 — Partition the data: For a point °p;—1,.. 4., € SW,
the weighted error e; between “v4; and Sﬁdj is given by,

e;(*0;) = w; (Pva, — 5v4,)?, (28)

and °p; is an inlier if e; < e. Like before, if ¢ > p proceed
to Step 3, otherwise go back to Step 1.

Step 3 — Determine best partition and refit model: With the
outliers discarded, WLSQ is repeated to improve parameters in
(12), and then the error is (28) is re-evaluated. The quality of
the improved model is calculated as the mean weighted error,

c
1
e—E E ej

J=1

The model parameters which result in the lowest error after
k initial estimates is used to parametrize (3) or (12) which is
then used to determine the platform’s motion “d;.

°pj € inliers. 29)

V. HYPERPARAMETER OPTIMIZATION

TEMPSAC and TWLSQ both require five hyperparameters
to be specified by the user: 1) the fixed forgetting factor A,
2) the sliding window length m, 3) the maximum number of
iterations k before terminating the estimation, 4) the threshold
distance € away from the model along the Doppler velocity
axis to define an inlier, and 5) the minimum required number
of inliers p to certify a usable model. To optimize these
hyperparameters a multi-variable genetic algorithm (GA) was
implemented. As the name implies, a GA is an optimization
heuristic inspired by the principles of natural selection and
genetics [50]. The algorithm mimics the evolutionary process
by improving a population of solution candidates over multiple
generations to find the optimal or near-optimal solution [51].

A GA begins by randomly initializing a population of
solutions that will cover a large portion of the search space.
Each solution is represented as a chromosome and its quality
scored using a cost function. Using the score, solutions are
selected as parents with the “more fit” solutions having a
higher chance of being chosen. The parents then undergo
crossover, where parts of their chromosomes are exchanged,
making a new solution (offspring). To reduce the likelihood
of converging to local minima, genetic diversity is maintained
through mutation; applying small changes to some offspring.
The new offspring then replace the old population and the
cycle repeated over generations until terminated. This flexible
structure allows GAs to simultaneous optimize continuous
variables (), €) and integer variables (m, k, p).

To assert that one set of hyperparameters produces a better
score than another, the model must generate the same output
when given identical inputs. Yet, the proposed models are non-
deterministic as they rely on randomness to select samples to

parameterize the velocity model. Therefore, when provided
with the same input data, the proposed methods can generate
different results, as seen in (18) and (27). This randomness is
known to introduce uncertainty in the final estimation [52], and
thereby in determining the best set of hyperparameters. While
the hyperparameters obtained from multiple optimization runs
could be averaged, as in [19], this can still cause the model
to have a wide error distribution. To ensure that only a single
optimization is needed and estimates are more precise, a new
optimization strategy is required that accounts for both the
estimation error and the estimation uncertainty.

To account for the estimation error the relative pose error
(RPE)) is included in the cost function. The relative pose error
quantifies ego-motion accuracy by comparing the estimated
change in trajectory ((7) and (16)) with the ground truth
change in trajectory (Ag;) [53], [54]. It is calculated as
RPE; = AAgZ— © Ag;, where © is an operator that computes
the relative transformation between poses [55]. For a trajectory
of [ poses, the mean relative error per estimate is computed
as the root-mean-squared relative pose error (RMS-RPE),

l

1 oW w
RMS-RPE = TZ(gi ogv)2.

i=1

(30)

To account for the estimation uncertainty, we assume that
the ego-motion estimation for a given measurement can be
modelled as an unknown Gaussian distribution whose mean
value | corresponds to the estimations true value (resulting in
a relative pose error of zero), and whose standard deviation
o corresponds to the estimation’s uncertainty. Therefore, any
deviation in the relative pose error from zero is caused by
the estimation’s uncertainty. The larger the uncertainty, the
greater the pose estimate will deviate from the ground truth,
producing a wider error distribution, and a larger standard
deviation of the relative pose error. By finding the hyper-
parameters that minimize the distribution’s spread (o) the
distribution is forced to be narrow, reducing the uncertainty.

Given a trajectory [, the standard deviation is calculated as,

€1y

1
ORPE = 7

l
Y (RPE; - RPE)”.
=0

The proposed cost function must minimize the average
relative error and its standard deviation. Therefore, the cost
function for the hyperparameter and uncertainty optimization
is formulated as a mixed integer programming problem,
RMS-RPE + TORPE
0<A<1 e>0
1< p<min{a;}

K3

minimize
subject to: (32)

m,k,p,€ NT.

Due to the size difference between RPFE and its variance, a
scaling value r is applied to ensure equal weighting of both.

A. Genetic Algorithm Implementation

The GA was implemented using the pymoo Python package
[56]. The algorithm used (32) as the cost function, and a
population size of 100. The termination criterion was set to
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Fig. 6. Handheld sensing platform used for acquiring the ColoRadar dataset
(A). The sensors and coordinate frames are labelled, with the base frame
shown in blue. Images of the ColoRadar dataset locations. B) Trajectory 1-5,
a large open underground mine. C) Trajectory 10-14 location, indoor hallways.
D) Trajectories 15-18, an indoor room. Modified from [43].

100 generations or a change in score of less than a 1 x 1076
over the past ten generations [56]. The algorithm leveraged
a simulated binary crossover (SBX) and binary tournament
selection. SBX generates two offspring by sampling around
the parent solutions [57], while binary tournament selection
selects two solutions at random and compares their scores.
The solution with the better score is selected as a parent,
ensuring the pool of parents has a better average score than
the average population [58]. We used polynomial mutation to
modify the gene of an offspring by generating a new value
from a polynomial distribution centred around the solution
[59]. A mutation rate of 90% was used to ensure a diverse
population and that the optimization covered a large solution
space. It also reduces the chance of premature convergence
due to tournament selection [58], at the expense of increased
optimization time.

VI. EXPERIMENTAL VALIDATION

The proposed methods are compared against three state-
of-the-art “instantaneous” ego-motion estimation methods:
1) standard RANSAC estimation introduced in [12] further
known as RANSAC, 2) the method implemented in [22]
that uses MLESAC estimation and ODR further known as
MLESAC, and 3) a novel version of 2) using a first-in-first-
out sliding window, further known as SW-MLESAC.

The results for this section were generated using the Col-
oRadar dataset [43]. ColoRadar is a multi-sensor dataset
spanning 6 locations and over 13 kilometres. In this paper,
all trajectories selected were captured by a user walking
though the environment with the handheld sensing platform
shown in Fig. 6 A). As the user walked, the platform was
moved so that it contained full 6-DOF motion. This often
involved pitching and rolling the platform intentionally in

TABLE I
COLORADAR DATASETS USED.

Trajectory ColoRadar Dataset Sequence Length (m)
Trajectory 1 2_23_2021_edgar_army_run0Q 341
Trajectory 2 2_23_2021_edgar_army_runl 194
Trajectory 3¢ 2_23_2021_edgar_army_run2 131
Trajectory 4 2_23_2021_edgar_army_run3 240
Trajectory 5 2_23_2021_edgar_army_run4 344
Trajectory 6 2_23_2021_edgar_classroom_run2 207
Trajectory 7 2_23_2021_edgar_classroom_run3 306
Trajectory 8¢ 2_23_2021_edgar_classroom_run4 183
Trajectory 9 2_23_2021_edgar_classroom_run5 187
Trajectory 10 12_21_2020_ec_hallways_run0 111
Trajectory 11 12_21_2020_ec_hallways_runl 181
Trajectory 12 12_21_2020_ec_hallways_run2 272
Trajectory 13 12_21_2020_ec_hallways_run3 278
Trajectory 140 12_21_2020_ec_hallways_run4 102
Trajectory 15 12_21_2020_irl_lab_run0 100
Trajectory 16% 12_21_2020_irl_lab_runl 87
Trajectory 17 12_21_2020_irl_lab_run3 90
Trajectory 18 12_21_2020_irl_lab_run4 95
Trajectory 19 2_23_2021_edgar_classroom_runQ 188
¢ Used previously in [19].
® Only used for the optimization in Sec. VI-A.
TABLE II
RADAR SENSOR PARAMETERS [43].
Parameter Value  Parameter Value
Frame rate 10 Hz  TX antennas 3
Frequency 77 GHz  Waveform FMCW
Max range 12m  RX antennas 4
Resolution 0.125 m  Azimuth resolution 11.3°
Doppler velocity res. 0.04 m/s  Data rate 63 Mbps
Max Doppler velocity  2.56 m/s  Elevation resolution 45°

addition to raising, lowering, and translating horizontally while
yawing to simulate micro aerial vehicles moving along 6-DOF
trajectories [43]. In total, 19 trajectories were selected, with
18 used for experimental validation, and one used to optimize
the methods under test (MUT). The exact trajectories used are
detailed in Table I, with trajectories 1-5 shown in Fig. 6 B)
generated in a large open underground mine, trajectories 6-9,
and 19 generated in a narrow underground mine passageways,
trajectories 10-14 shown in Fig. 6 C) generated in 4 different
indoor hallway environments, and trajectories 15-18 shown in
Fig. 6 D) generated from 4 distinct paths of an indoor room.

For the purposes of the investigation, only the single chip
radar sensor (TT AWR1843BOOST-EVM) and the IMU (Lord
Microstrain 3DM-GXS5-15) are considered. Additionally, a
static offset is applied to the elevation angle of the radar
point clouds. The methods within this paper make no claim
to deal with radar bias. The scope of this paper is the filtering
of radar point clouds for ego-motion estimation. Methods of
removing radar bias are presented in [25]. The radar sensor
parameters are detailed in Table II. It is important to note that
“resolution” for radar sensors refers to the required separation
between targets to distinguish them in the sensor’s output. The
orientation of the platform is provided by the IMU.

Before the MUT were experimentally validated for 3-DOF
motion & 6-DOF motion, their hyperparameters were opti-
mized using trajectory 14, see Section VI-A. Post optimization,



TABLE III
HYPERPARAMETERS IN 3-DOF AND 6-DOF MOTION VALIDATION.

Parameter TEMPSAC TWLSQ RANSAC
Fixed forgetting factor (\) 0.1449 0.4845 N/A
% Sliding window length (m) 2 3 N/A
[a Maximum iterations (k) 398 972 1350
o Inlier threshold (¢) 14.05 0.00382 13.99
Min. number of inliers (p) 22 31 25
Fixed forgetting factor () 0.7160 0.1576 N/A
LS Sliding window length (m) 2 2 N/A
A Maximum iterations (k) 1494 68 608
©  Inlier threshold (¢) 14.84 14.39 0.00619
Min. number of inliers (p) 24 24 31
TABLE IV

TIMING STATISTICS (MAX-MIN/AVERAGE) OF 3-DOF AND 6-DOF MUT
OVER TRAJECTORY 19 (187 SECONDS LONG).

Method  Per Estimate (ms) Trajectory (s)
min-max ave. min-max  ave.
TEMPSAC 58-186 74 117-122 120
% TWLSQ 26-65 35 57-59 58
A RANSAC 38-182 45 72-74 73
h MLESAC 1-182 15 24-26 25
SW-MLESAC 2-284 49 79-87 83
TEMPSAC 130-282 166 263-271 267
% TWLSQ 4-31 6 9.7-10 9.9
A RANSAC 18-77 24 39-40 39.7
) MLESAC 5-425 84 130-142 138
SW-MLESAC 12-800 199 316-334 326

the proposed methods were validated across 18 trajectories in
3-DOF motion and 6-DOF motion scenarios respectively, in
Section VI-B and Section VI-C. Due to the non-deterministic
nature of the MUT, 100 evaluations per trajectory are per-
formed to provide an accurate representation of performance.

A. Hyperparameter Optimization Results

RANSAC, TEMPSAC, and TWLSQ were optimized sepa-
rately using (32) as the cost function and the GA implemented
in Section V-A. Trajectory 14 was selected as the hyper-
parameter optimization dataset since a hallway environment
should generalize well to other indoor environments [11], and
it was the trajectory used in [19]. By optimizing over the same
trajectory, the results here can be directly compared to [19].

In total 18,600 distinct hyperparameter combinations were
tested across all 6 optimizations. The parameters that min-
imized (32) are shown in Table III. The fixed forgetting
factor (\) varied between favouring more recent measurements
(A — 0) to more evenly weighting measurements (A — 1).
Additionally, A had an impact on the maximum number of
iterations k. Instances where A — 1 resulted in double or more
iterations required. One reason for this is because as A — 1,
the measurements weights approach equal, increasing the
number of equally likely solutions. With only a finite number
of hypotheses able to be tested, this larger search area increases
the estimation uncertainty. The increase in uncertainty and its
accompanying error can be offset by searching more of the
area (i.e., a larger k). For the sliding window length, the
optimization found m = 2, as expected due to the radar
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sensor’s low frame rate. The larger the sliding window, the
less the measurements correlate. As measurements correlate
less, fewer inliers overlap and instead start to act like noise,
decreasing estimation accuracy. The inlier threshold was found
to be comparatively large (>> 1) or small (<< 1). This is due
to € being the squared error threshold and the square-root of
a number larger than one is a smaller number, but the square-
root of a number smaller than one is a larger number. The
minimum number of inliers (p) was similar between all the
methods; the largest difference was seven inliers. On average,
p = 27, with the given measurement from the single chip radar
having 140 samples. Therefore, for the velocity estimate must
capture at least 19% of the measurement as inliers.

MLESAC and SW-MLESAC were not optimized since they
have no hyperparameters. To ensure a fair comparison, the
sliding window length for SW-MLESAC was the same as the
majority of other sliding window methods (m = 2).

The hyperparameters had a major impact on the compu-
tation time of the MUT, as shown in Table IV. The lower
the number of iterations k, the faster the execution time.
Furthermore, as the number of samples n being estimated
increases, the execution time increases by O(n?). TEMPSAC’s
slow performance is a result of the sample selection’s imple-
mentation. MLESAC and SW-MLESAC’s wide range of per
estimate execution times is due to the dynamic number of
iterations required for the model to converge [22]. All methods
show online performance, except 6-DOF SW-MLESAC. The
increased number of samples due to the sliding window
doubled the execution time compared to 6-DOF MLESAC.

B. Validation for Three Degrees-of-Freedom Motion

The ColoRadar dataset contains 6-DOF motion and mea-
surements. In order to evaluate the five MUT in a 3-DOF
scenario the dataset was projected onto the xy-plane. The
MUT are compared based on their root-mean-squared ab-
solute pose error (RMS-APE) as defined in [54] and the
average root-mean-squared absolute pose error over the 100
evaluations (AAPE). Fig. 7 shows the estimated zy-path (A,
B, C) from Trajectory 3 (left), Trajectory 8 (centre), and
Trajectory 16 (right), the RMS-APE error over time from a
single evaluation (D, E, F), and the RMS-APE distribution
for the 100 evaluations (G, H, I). These trajectories were
previously evaluated in [19]. The methods proposed within this
paper generated narrower RMS-APE distributions compared to
the implementation in [19].

The xy-paths in Fig. 7 (A, B) show that RANSAC
performed the worst, consistently underestimating the ego-
motion, confirming the findings in [19]. The RMS-APE and
the distribution box plots in Fig. 7 (D, G, E, H) show that
RANSAC has the largest peak RMS-APE (15 m), the largest
median RMS-APE (8.8 m), and the widest error distribution.

RANSAC’s poor RMS-APE performance is caused by its
reliance on a single measurement to estimate ego-motion.
When this measurement has a high outlier to inlier ratio,
RANSAC is prone to fitting the velocity model to outliers
[12]. This can be seen in the RMS-APE plot in Fig. 7 (E) at
65 seconds. At this time, the errors in RANSAC’s estimate
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Fig. 7. Results from TEMPSAC (green), TWLSQ (red), RANSAC (purple), MLESAC (gold), and SW-MLESAC (blue) for trajectory 3 (left column), 8
(centre column), and 16 (right column). The rows show the zy-path (A, B, C), absolute pose error over time (D, E, F), and error distribution over the 100
evaluations as box plots (G, H, I). On average, SW-MLESAC outperforms all other methods.

are more pronounced than other MUT, varying up and down all trajectories. While TEMPSAC outperformed its implemen-
over a short period of time before experiencing a large spike tation in [19], it underperformed TWLSQ in all but trajectory
in error of 3 m. MLESAC also estimates ego-motion using a 17, where it achieved a 0.08 m improvement in AAPE.
single measurement. However, it is the second-best performing TWLSQ outperformed TEMPSAC and its implementation in
MUT, as shown in Fig. 7 (G, I). This is because MLESAC [19] due to the reformulated temporal weights (25). In [19]
maximizes the log-likelihood of an estimate’s existence, lead- the weights were normalized, whereas in (25) they are not.
ing to estimates with lower error. TWLSQ outperformed all MUT over 2 trajectories by 4.3% on

A sliding window provides a marked improvement in ac- average over the next best method. MLESAC outperformed all
curacy for TWLSQ and TEMPSAC over RANSAC, and also MUT over 4 trajectories by 9% on average over the next best
improves the estimates provided by SW-MLESAC compared method. SW-MLESAC performed the best overall, outperform
to those from MLESAC. Use of sliding window increases the all other methods in 66.7% of trajectories, and outperforming
inlier density, thereby producing more reliable estimates. MLESAC (the next best method) by up to 15%.

Table V presents the AAPE for all 18 trajectories, high-
lighting the best performing method in bold. The proposed
methods reduced AAPE by up to a 27% in trajectories 3 and The ColoRadar dataset containing full 6-DOF motion is
16 compared to [19]. However, all methods experienced an used for this section. As before, to evaluate the five MUT, the
increase in AAPE for trajectory 8. The results from Table V  root-mean-squared absolute pose error (RMS-APE) is used, as
show that the proposed methods outperformed RANSAC over well as the averaged absolute pose error (AAPE) for the 100

C. Validation for Six Degrees-of-Freedom Motion

11



TABLE V
COMPARISON OF AVERAGE ABSOLUTE POSE ERROR (AAPE) FOR 3-DOF AND 6-DOF MOTION ESTIMATION. AAPE 1S IN METRES.

3-DOF 6-DOF
Tr. TEMPSAC TWLSQ RANSAC MLESAC SW TEMPSAC TWLSQ RANSAC MLESAC SW
# MLESAC MLESAC
1 12.03 11.80 18.74 8.64 8.35 8.48 8.37 11.35 10.08 9.70
2 3.99 3.46 8.95 2.85 2.70 5.68 5.99 6.31 3.18 3.16
3 5.50 5.15 8.86 3.88 3.83 3.85 3.84 5.20 4.02 3.97
4 9.75 9.09 15.03 6.76 6.48 5.67 5.62 15.32 8.57 7.87
5 14.61 13.86 25.85 9.67 9.57 11.58 11.57 27.37 12.27 11.8
6 7.19 6.95 9.30 5.29 4.82 3.12 3.13 11.64 6.49 5.56
7 5.06 4.85 5.13 4.03 342 4.27 4.26 6.13 4.86 4.38
8 6.04 5.58 6.95 4.48 4.31 3.66 3.55 8.38 5.48 5.21
9 5.71 5.38 7.32 3.87 3.37 3.26 3.24 7.72 4.43 3.76
10 3.45 3.01 3.71 248 2.47 3.56 3.64 5.48 3.97 391
11 7.09 6.38 8.40 5.53 5.50 6.69 6.73 6.37 5.90 5.88
12 5.05 4.68 6.62 3.95 5.28 5.29 5.41 3.21 4.13 4.20
13 6.10 5.37 6.48 4.26 4.81 7.60 7.56 9.65 5.46 5.36
15 1.21 1.14 2.71 1.17 1.49 3.23 3.29 2.453 1.53 1.49
16 1.82 1.71 3.29 2.13 2.26 4.40 4.44 1.93 2.32 2.14
17 0.96 1.04 1.218 0.98 0.75 1.99 2.13 1.82 1.65 1.50
18 1.80 1.78 2.539 1.66 1.87 4.19 4.08 1.60 2.09 2.07
19 5.09 5.24 7.29 4.75 4.86 4.49 4.54 7.82 5.48 5.09
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Fig. 8. Results from TEMPSAC (green), TWLSQ (red), RANSAC (purple), MLESAC (gold), and SW-MLESAC (blue) for trajectories 5 (left column), 9
(center column), and 10 (right column). The rows show the zyz-path (A, B, C), absolute pose error over time (D, E, F), and error distribution over the 100
evaluations as box plots (G, H, I). TWLSQ performs best on average but shows higher variability than MLESAC and SW-MLESAC.
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TABLE VI
EXTERNAL COMPARISON OF ABSOLUTE POSE ERROR (RMS-APE) FOR
6-DOF MOTION. RMS-APE 1S IN METRES.

Method  Trajectory 10  Trajectory 19

TEMPSAC 3.56 4.49
TWLSQ 3.64 4.54
RANSAC 5.48 7.82
MLESAC 3.97 5.48
SW-MLESAC 391 5.09
EKF-RIO [24] 9.352 10.99
Ours-P2D [24] 7.62 8.382
Ours-D2M [24] 12.65 14.05
Ours [24] 5.223 8.340
EKF-RIO [23] N/A 5.05
iRIO [23] N/A 2.377
iRIOM [23] N/A 0.916

[ Trajeclory 15 Trajeclory IGJ

Trajectory 17 Trajectory 18

Fig. 9. Ground truth motion along the °z-axis for trajectories 15-18. All
trajectories have erratic z-motion.

evaluations. Fig. 8 summarizes the results from trajectory 5
(left), trajectory 9 (centre), and trajectory 10 (right). It shows
the estimated xyz-path (A, B, C), the RMS-APE (D, E, F), and
the RMS-APE distribution box plots (G, H, I). Trajectories 35,
9, and 10 were selected to evaluate the MUT’s performance for
their unique and diverse locations. Trajectory 5 is a large open
underground mine environment with rough unstructured walls
providing many surfaces for multi-path reflections. Trajectory
9 is a narrow underground mine passageway with similarly
rough and unstructured walls. Trajectory 10 is a structured
indoor hallway environment in a different location than tra-
jectory 14 used in Section VI-A.

As seen in Fig. 8 (A, C), RANSAC performs the worst when
estimating motion along z with a final pose 10 m lower than
the ground truth. RANSAC’s performance was expected given
the results from Section VI-B and [19]. However, Fig. 8 (B)
shows that TEMPSAC performed the worst with 5 m lower
displacement along z than the other MUT. The RMS-APE
results in Fig. 8 E) show that TEMPSAC also has the highest
peak RMS-APE at 13 m. The cause for this unexpectedly
poor performance can be seen at around 100 seconds. At this
time TEMPSAC makes multiple incorrect motion estimates
resulting in a near instantaneous increase in RMS-APE of 5
m. These incorrect estimations were caused by TEMPSAC
fitting the velocity model to outlier samples over consecutive
time steps. Due to TEMPSAC’s sampling strategy (detailed in
(27)), both inliers and outliers from newer measurements are

favoured for sampling and ego-motion estimation. Therefore,
when the most recent measurements have a high ratio of
outliers to inliers, the ego-motion estimate is more likely to fit
those outliers, potentially causing large changes in RMS-APE.
In Fig. 8 (E), at 100 seconds all MUT excluding RANSAC
experienced an increase in RMS-APE, and before 100 seconds
TEMPSAC had similar performance to TWLSQ.

The error distributions in Fig. 8 (G, I) shows that RANSAC
performs the worst, having the largest median RMS-APE
in all 3 trajectories. SW-MLESAC consistently outperforms
MLESAC. TEMPSAC and TWLSQ perform similarly across
all trajectories, with lower median RMS-APE than MLESAC
and SW-MLESAC. However, TEMPSAC and TWLSQ have
a wider distribution. The distribution is wide enough that
nearly 100% of MLESAC and SW-MLESAC’s evaluations
fall into the largest 50% of TEMPSAC and TWLSQ RMS-
APE results. This can be seen by the amount of overlap
between the box plots in Fig. 8 (G, H, I). Meaning that while
TEMPSAC and TWLSQ produce more accurate estimates for
a given evaluation, MLESAC and SW-MLESAC have a lower
variance over multiple evaluations. This suggests that future
work on the hyperparameter optimization’s cost function (32),
is required to minimize the error distribution’s spread (crpE).

Table V shows the AAPE for all 18 trajectories, with the
best performing method shown in bold. As expected given the
results in Fig. 8, the proposed methods outperform RANSAC
in all trajectories other than 15-18. Trajectories 15-18 are
different paths (100 m or less) of the room shown in Fig.
6. The room is very cluttered with desks, lab equipment, and
other obstacles, and the trajectories’ ground truth have highly
variable z-motion over short periods of time, as seen in Fig. 9.
This unpredictability causes measurements to overlap less and
the proposed methods’ to generate worse motion estimates.
The proposed methods performed very similar, with TWLSQ
showing an average improvement of 0.7% over TEMPSAC
across all trajectories. Additionally, the proposed methods
outperformed all other methods across 55% of trajectories
evaluated. SW-MLESAC performed the next best, outperform-
ing all other methods in 27.8% of the trajectories.

Table VI compares the MUT results over trajectory 10
and 19 with other reported methods, i.e., EKF-RIO, Ours,
Ours-P2D, and Ours-D2M presented in [24] and EKF-RIO,
iRIO, and iRIOM presented in [23]. The RMS-APE values
corresponding to the MUT are their AAPE and the other values
are reused from [23], [24]. Both papers presented an imple-
mentation of EKF-RIO [60], the best-performing open-source
4D radar inertial odometry software [23]. Ours is a hybrid
direct | indirect approach that incorporates a measurement
uncertainties model. Ours-P2D, and Ours-D2M are similar to
Ours but use different registration methods and uncertainty
residuals (based on LIDAR, and mmWave, respectively) [24].
iRIO (imaging radar inertial odometry) [23], estimates ego-
motion using an extended Kalman filter to fuse IMU mo-
tion estimates, radar image registration, and graduated non-
convexity estimates. iRIOM is identical to iRIO, except the
final ego-motion estimate is used to build a map and loop
closure is performed to improve accuracy.

Over trajectory 10, out of the methods presented in [24]



Ours performs the best, and outperformed RANSAC by 4.8%.
However, it performed worse than all other MUT, underper-
forming TEMPSAC (the best MUT) by 31.8%. Over trajectory
19, iRIOM performed the best with sub-metre accuracy thanks
to loop closure. The second-best method iRIO was a more
direct comparison to the MUT since there is no map making.
While its error is almost half of TEMPSAC’s (the best MUT),
both iRIO and iRIOM are using an imaging radar that is over
300% more expensive than the radar the MUT use.

VII. DISCUSSION

The 3-DOF validation shows that the proposed methods pro-
vide up to a 27% improvement and generate narrower AAPE
distributions than their previous implementation. These results
suggest that the optimization presented in Section V succeeded
in selecting hyperparameters which minimized the RPE and its
variance. However, this highlights a potential trade-off where
the higher precision may result in a higher median RMS-APE,
as was the case with trajectory 8. Comparing all the MUT,
SW-MLESAC performed the best overall, outperforming all
other methods in 66.7% of trajectories, and outperforming
MLESAC, the next best method, by up to 15%.

The results from the 6-DOF validation shows more vari-
ability over all MUT due to the increase in DOF of the
estimation. The best method per trajectory differs significantly
from the 3-DOF validation, while the corresponding AAPE is
very similar. On average, the best performing 6-DOF estimate
is 3.9% worse than the corresponding 3-DOF estimate. Di-
rectly comparing implementations of SW-MLESAC (the best
performing 3-DOF MUT), the 3-DOF version outperforms the
6-DOF version in 61% of trajectories. The reason for this
difference in performance, besides the increase in DOF, is the
low elevation resolution of the mmWave radar. The elevation
resolution results in objects which are far apart and have
different Doppler velocities being blurred together [61], [62].
With an elevation resolution of 45° and a distance from the
sensor of 10 m, any objects less than 10 m apart from one
another along the °z-axis will be indistinguishable.

Overall, when presented with 6-DOF motion conditions, the
proposed methods outperform all MUT in 55% of trajectories.
Of those trajectories, the majority are from an open under-
ground mine (trajectories 1-5) and a narrow mine passageway
(trajectories 6-9, and 19). Yet, in Section V the GA was trained
on data from a structured indoor environment, suggesting some
generalization. Overall, TWLSQ performed the best, showing
a 0.7% improvement on average over TEMPSAC. The im-
provement can be attributed to TWLSQ’s uniform sampling
strategy, which ensures that samples from high density regions
within the sliding window are more likely to parameterize
the velocity model. These high density regions correspond to
inliers because over short periods of time all inliers are a result
of the same platform motion, i.e., are temporally consistent.
Concurrently, the likelihood of generating a model using
outliers is reduced, since outliers in consecutive measurements
have no temporal relation with one another. These findings
are consistent with [19] and the principles of LIDAR scan
matching [21]. Further evidence of these effects can be seen
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by comparing the results from SW-MLESAC to MLESAC.
The only difference between the two methods is the use of
a sliding window. Yet, SW-MLESAC outperforms MLESAC
in 99.94% of trajectories, showing that temporally consistent
mmWave measurements can constrain the model estimation,
thereby improving performance. These results open the door
for future research on similar techniques used in different
environments and other mmWave-based applications such as
target tracking and environmental modelling.

Another area of potential improvement is to apply similar
techniques to scenarios with multiple moving objects. Tradi-
tional “instantaneous” ego-motion estimation is more likely to
fail in these scenarios due to their RANSAC framework [12].
As the number of samples from moving objects with similar
velocities increases, the velocity model will be parameterized
using those samples rather than the samples of stationary
objects. Due to the problems similar nature with the one
addressed in this paper, applying a similar technique could
make the ego-motion estimation more robust, but further
research is required.

While the results presented in this paper also suggest a
level of generalization of the proposed optimization method,
future work is required to strengthen this claim. Further, to
the best of the authors’ knowledge, no other research has been
conducted examining the generalization of the instantaneous
ego-motion velocity model to different environments. Future
work in both these areas would pave the way for more robust
and reliable applications of mmWave odometry that leverages
temporal relationships in Doppler velocity measurements.

VIII. CONCLUSION

Millimetre wave radar sensors are becoming increasingly
popular for ego-motion estimation because they are more
robust to environmental factors and do not require mapping
for motion estimation. However, it is challenging to filter
out the high number of samples caused by specular (mirror-
like) reflections, diffraction, and multi-path reflections. Yet,
traditional methods of estimating ego-motion using Doppler
velocity only use a single measurement cloud [12]-[14], [17],
[22]. These methods ignore the time-dependency of successive
measurements, a dependency that is critical to other ego-
motion techniques like LIDAR scan matching.

This paper presents two methods of estimating 6-DOF ego-
motion, building upon [19]. The proposed methods use a
temporally weighted sliding window to leverage the temporal
relationship between sparse measurements. Experimental re-
sults show that this relationship improves estimation accuracy
when compared to using a single measurement, as evidenced
by the 5.5% improvement of SW-MLESAC over MLESAC,
where the only difference between the two implementations
of [22] is the sliding window. The proposed method were
also compared with the state-of-the-art methods presented
in [22]-[24], outperforming all other methods in 53% of
trajectories tested. In this comparison, iRIO and iRIOM per-
formed the best but use a higher quality radar (360% more
expensive than the one used in this paper). However, the
proposed methods performed better than all other methods



while having a simpler architecture and a cheaper sensor.
Finally, the experimental validation of [19] was extended to
include 18 unique trajectories along with a comparison against
two additional state-of-the-art ego-motion estimation methods,
confirming that the proposed sliding winding improves motion
estimation for both 3-DOF and 6-DOF indoor environments.
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