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Abstract

Percutaneous nephrolithotomy is a procedure used to treat patients with large or irregularly shaped kidney stones.
Surgical instruments are inserted through a small incision to access the kidney and remove the calculi. Surgeons who
have less experience with the procedure manifest significantly higher rates of complications due to the procedure’s
steep learning curve. This issue is further exacerbated by a lack of training opportunities in clinical settings. This paper
introduces a teleoperative framework that can provide training to surgeons as well as assistance during procedures, based
on two main components. Firstly, a type of constrained inverse kinematics that decouples the tooltip position from its
orientation using a remote centre of motion, and incorporates the joint limits analytically. This reduces the workload of
the procedure by having the surgeon control only the tooltip position rather than the position and the orientation while
preventing the inverse kinematics from returning joint angels outside of the robot’s abilities. This kinematic framework
also allows a three-degrees-of-freedom haptic device to control a six-degrees-of-freedom manipulator. Secondly, haptic
feedback is provided to help guide and teach the surgeon during the procedure. Haptic feedback allows the surgeon to
remain in full control during the procedure while still receiving haptic cues and assistance.

Experimental results indicate that the haptic cues improved user’s accuracy, and they had shorter and smoother paths.
This leads to a shorter procedure time overall. The results also indicate that the haptic assistance helped teach users
the ideal trajectory of the procedure and that users who were taught with haptic feedback performed better than those
who never experienced any haptic feedback.

Keywords: Percutaneous nephrolithotomy, medical robotics, haptic assistance, constrained inverse kinematics, remote
centre of motion, human-robot interface

1. Introduction

Percutaneous nephrolithotomy (PCNL) has rapidly been
established as the main management of urinary calculi for
patients with large or irregularly shaped kidney stones.
The procedure involves accessing the kidney via a small
incision in the patient’s back, through which thin instru-
ments are threaded. A biplanar fluoroscope captures real-
time moving images of the kidney allowing the surgeon
to see its internal structure, the stones, and the surgical
tools. Once the stones are localized they are either re-
moved through a tube or broken up with high-intensity
ultrasound waves before being removed [1].

Despite over 40 years of continuous development and
widespread clinical acceptance, PCNL remains an ardu-
ous procedure to learn. Particularly in less experienced
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hands, the procedure can lead to higher complication rates
compared to other endoscopic interventions [1, 2]. Devel-
oping adequate expertise to achieve surgical competence
in PCNL is not trivial, in addition to gaining access to the
kidney, the procedure also requires proficiency with stone
fragmentation, tool navigation, and stone scavenging. De-
spite the documented safety and efficacy of percutaneous
renal access, as few as 11% of urologists successfully gain
access to the kidney stones themselves [3]. This low suc-
cess rate is generally attributed to a lack of skills and lim-
ited training opportunities. Due to the procedure’s steep
learning curve and inherent complexity, PCNL residents
will inevitably perform a number of inadequate interven-
tions during their training process [2, 4].

Several complications related to PCNL are due to mis-
takes in tool steering while gaining kidney access; this in-
cludes puncturing the pleural, which can lead to pneu-
mothorax, hydrothorax, or hemothorax; and puncturing
nearby organs such as the colon; it is possible to suffer
a vascular injury from the puncture of the renal pelvis
or a calyceal infundibulum [5–8]. The tool must be in-
serted through a calyx in the kidney, missing the calyx
leads to additional bleeding or complications like infec-
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tions [5, 6]. Another possible cause of excessive bleeding is
the sharp angulation of the nephroscope or sheath during
PCNL [5, 6], therefore, careful control of the orientation is
vital.

A critical question in PCNL is how to define and teach
an optimal tool path that is necessary to gain proper ac-
cess to the kidney stones. The tool path obtained from
experienced surgeons can serve as a standard measure of
performance for novices and also help them develop the re-
quired surgical skills. The question then arises: if what one
defines as the optimal tool path is known from experience,
how can this information complement or compensate for
a resident’s lack of skill during surgery? The answer may
be sought in two distinct yet complementary paradigms:
surgery simulators for training and robotic assistance.

In the first paradigm, virtual and augmented reality are
used as a platform for skill development. These simula-
tors are becoming an elemental building block in medical
training for PCNL [9]. One example of this is the PCNL
simulator from Marion Surgical [10] with haptic feedback
capabilities. Another example is [11], where augmented
reality was incorporated with robotic assistance to per-
form PCNL. Haptic feedback in both virtual and teleop-
erative training environments is known to provide reduced
learning times, improve task performance, quality, dexter-
ity, and retention rates [12–14] and create better accep-
tance of simulator training by professionals [15]. A com-
mon method of generating constraints for haptic feedback
are virtual fixtures; their application is explored in [16–18].
An alternative, is the use of sensors to provide haptic cues
based on tissue characteristics. In [19], haptic feedback
is based on tissue impedance. A force sensor was used in
[20] to measure the axial force on the needle and apply the
same force through haptic feedback. Chowriappa et al.
propose providing haptic assistance to novices based on
expert demonstrations for trocar insertion using Gaussian
mixture models and Gaussian mixture regression to gen-
erate a predictive model [21]. Alternatively, in [22], haptic
feedback is created based on obstacles in the workspace
and an expert demonstration given in a simulation.

The second paradigm to improve PCNL performance
proposes incorporation of some level of robotic assistance.
For example, one can automate a surgical sub-task such
as tool orientation, stone fragmentation, stone removal,
etc., while the surgeon learns to perform a complemen-
tary task. Sub-task automation allows the workload to be
shared between the operator. In addition, data acquired
from expert surgeons through a simulator can define an
optimal tool path, and subsequently a robotic agent can
assist the surgeon in following that path during surgery. In
this context, less experienced surgeons would benefit from
the expertise of more experienced surgeons.

Kidney access and percutaneous tool manoeuvring are
prime examples of where robotic assistance can be ben-
eficial. Establishing access to the kidney is the first and
the most crucial step in PCNL [23]. Typically done under
two-dimensional image guidance, it becomes challenging

to visualize and mentally recreate the three-dimensional
anatomy of the kidney and the relative location of stones
and tools. To simplify the workload, the entry point into
the kidney should be constrained to minimize damage to
the surrounding tissue. With the assistance of a robotic
manipulator, a remote centre of motion (RCM) can be
used to constrain the entry point in this fashion.

RCMs are used in a variety of other applications. The
most common use of an RCM is through a physical mecha-
nism that restricts the available motion such as those used
in [24–27]. Less common is the inclusion of a remote centre
of motion to the inverse kinematics directly. Some exam-
ples of this do exist, such as [28], where the incision point
during teleoperation was constrained by considering it a
linear joint in the kinematic framework. Similarly, [29] ap-
plied the concept of an RCM, like those used in teleopera-
tive surgery, to a mobile robot with a robotic manipulator.
Applying an RCM in the inverse kinematics ensures that
the tool always passes through the original incision point
in the patient. In addition to the RCM, it is important to
consider the joint limits of the robotic manipulator to pre-
vent entering error states, colliding with itself, and posing
an additional risk to the patient. Together, the RCM and
the joint limits play a crucial role to reduce tissue damage
and the risk of complications.

With a teleportation scheme, the robotic agent helps the
operator follow a predetermined kidney access path while
maintaining the RCM. Further, the incorporation of haptic
feedback allows the surgeon to compensate for trajectory
tracking errors, while maintaining full control of the proce-
dure. To address these issues, this paper proposes merging
the two paradigms described earlier to implement a novel
cyber-physical simulator with robotic assistance and hap-
tic feedback for PCNL training.

The cyber-physical PCNL simulator proposed in this pa-
per has three complementary contributions. First, a tele-
operation framework is used where the position and ori-
entation of the robot are decoupled and the operator only
controls the Cartesian position of the tool tip while the
robot ensures that the position of the entry point in the tis-
sue remains unchanged. This is the idea behind an RCM.
A key difference here compared to previous works is that
the RCM is incorporated into the inverse kinematics by
considering the entry point as the tip of a tool with vari-
able length, while the joint limits are included analytically
in the formulation using a saturation function for the joint
speeds. This is the focus of section 2.

The second contribution lies in the implementation of
the haptic assistance. The simulator bases the potential
field on an expert demonstration provided in the physical
slave environment, where the demonstrator controls the
robot through the haptic device, and the stiffness of the
potential energy field is dependent on the proximity to
the phantom tissue. This potential field is then used to
determine the magnitude and direction haptic feedback
force to apply. This is discussed in section 3. Force fields
are defined based on demonstrations acquired in the phys-
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ical environment directly. This way, uncertainties and un-
modelled dynamics of the environment are accounted for
and the haptic feedback reflects the same conditions faced
by the experts demonstrating the procedure.

The final contribution proposes a method of evaluating
the effectiveness of the framework proposed in this paper.
Current literature primarily evaluates performance in vir-
tual environments, while the experiments performed for
this paper consider a cyber-physical environment. Sixteen
participants took part in a total of five trials each. The
participants were each placed in one of three groups; the
first group received no haptic assistance, the second group
received haptic assistance for all trials, and the third group
is trained using haptic assistance for the first three trials
and completed the last two evaluation trials without any
haptic assistance. To the best of the author’s knowledge,
this is the first implementation of a cyber-physical simu-
lator with haptic and robotic assistance for PCNL.

The remainder of the paper is organized as follows. Sec-
tion 4 focuses on user trials along with the validation of
the analytical joint limitations. It was found that the ana-
lytical joint limits functioned as anticipated; as a joint ap-
proaches a limit it begins to saturate and the inverse kine-
matics returns an alternative joint configuration to reach
the desired point. The user trials demonstrated that those
with haptic assistance had shorter path lengths overall as
well as a shorter procedure time; they also demonstrated
smoother and more efficient trajectories when compared
to the groups without haptic assistance. The third group
- trained with haptic feedback - demonstrated an overall
better performance than those without, however, they did
not perform as well as the participants who received hap-
tic assistance during all trials. These results are discussed
in more detail in section 5. The overall performance of the
contributions is discussed in section 6, along with potential
future improvements.

2. Constrained Robot Kinematics for Kidney Ac-
cess in PCNL

During PCNL a long thin tool is inserted into a small
incision into the patient’s back to gain access to the kid-
ney; this requires the control of the position of the tooltip
as well as the orientation of the tool to ensure that it con-
tinues to pass through the entry point during insertion.

In the context of robot-assisted PCNL, these two points
are sufficient to solve for the inverse kinematics of the
robotic manipulator using an RCM. Since the robot will
control the tool to ensure that it passes through the two
points in space, the inverse kinematics need to be devel-
oped in terms of six Cartesian coordinates (two 3D points)
rather than three Cartesian coordinates defining the posi-
tion and three angles defining the orientation. The inverse
kinematics should take into account the joint limits of the
manipulator so as not to exceed them during operation.

To configure the inverse kinematics as described above,
the forward kinematics must be defined to get the RCM

Figure 1: The general setup of cyber-physical robot-aided PCNL
training framework. The 3 DOF haptic device provides position
information to the controller while receiving force feedback informa-
tion. The controller sends joint angles to the 6 DOF robotic arm,
allowing the 3 DOF haptic device to control the 6 DOF robotic arm.

and the tooltip position based on the joint angles of the
manipulator.

2.1. Forward Kinematics

The forward kinematics of the robot arm is derived using
the modified Denavit-Hartenberg convention which spec-
ifies a set of homogeneous transformations i−1

i T that ex-
presses the position and orientation of the kinematic chain’s
ith joint with respect to joint i− 1 as:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1

sθisαi−1 cθisαi−1 cαi−1 dicαi−1

0 0 0 1

 (1)

where c(·) stands for cos(·) and s(·) for sin(·), θi is the angle
of the ith joint about its rotational axis, αi−1 is the angle
from the previous (i − 1) rotational axis to the current
(ith) rotational axis sometimes called link twist, ai−1 is
the distance from the previous joint axis to the current
joint axis (generally the previous link length) and di is the
displacement of the current link along its axis of rotation
also known as the link offset.

The transformation matrices are multiplied, as shown
in (2) and (3) where j is the total number of degrees-of-
freedom (DOF). The tooltip j

tp ∈ IR4×1 and constrained
point j

cp ∈ IR4×1 can be described relative to the jth ref-
erence frame by using only the fourth column of (1), since
their orientations are not necessary. The tooltip position
0
tp ∈ IR4×1 is

0
tp =

j∏
i=1

(i−1
i T) jtp. (2)

The constrained point position 0
cp ∈ IR4×1 is

0
cp =

j∏
i=1

(i−1
i T) jcp. (3)

Since the constrained point is along the tool its location
can be defined in the same way as the tooltip with the only
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notable difference being the tool length dt and dc as shown
in Fig. 1. The tool itself will have a constant length, while
the distance to the constrained point is variable depending
on the insertion depth l of the tool inside the kidney such
that dc = dt − l. This means that jtp can be defined as:

j
tp =

[
aj −dtsαj dtcαj 1

]T
, (4)

where the transpose is denoted by (·)T , and j
cp can be

defined relative to j
tp as:

j
cp =

[
ai−1 −dcsαj dccαj 1

]T
=j
t p−


0

−lsαj
lcαj

0

 , (5)

The vectors created in (2) and (3) together contain six
equations for describing the tool’s tip and constrained point
positions relative to the base. Altogether they make up the
forward kinematic solution. These equations are used to
find the inverse kinematic formulas; however, the results
need to be bounded by the joint limits of the manipula-
tor. To take the joint limits into account during the in-
verse kinematic model, a nonlinear saturation function is
implemented that limits the speed of a given joint when
it approaches its limit. This is implemented as a nonlin-
ear gain in the Newton Raphson method. Which has the
added benefit of providing a unique and feasible solution
rather than multiple solutions where a particular configu-
ration needs to be selected.

2.2. Constrained Inverse Kinematics

The tooltip and constrained point positions and veloci-
ties can both be found using the current joint angles and
angular velocities. To find the constrained inverse kine-
matics the opposite must be done, such that the joint an-
gles can be found based on the tooltip and constrained
point positions.

Let pi be the ith entry in vector p defined in (2) and (3).
One can define the task space vector x ∈ IR6×1 as

x = [0tp1
0
tp2

0
tp3

0
cp1

0
cp2

0
cp3]T . (6)

Normally, the Jacobian is constructed using three equa-
tions describing the position and three describing the ori-
entation of the manipulator. In (6), however, the Jacobian
is constructed from the six position equations, three for the
tooltip position and three for the RCM. These equations
define the position of the tool; it is important to note that
while this allows the 6 DOF manipulator to be controlled
with a 3 DOF device, only 5 DOF are being accounted for
since the tool can be rotated about its longitudinal axis
which does not affect its Cartesian position. Let:

Θ = [θ1 θ2 . . . θj ]
T . (7)

be the joint space vector of the manipulator (∈ IRj×1).
The Jacobian describes the relationship between ẋ (the

(a) Joint angle saturation function

(b) Constrained inverse kinematics overview

Figure 2: The inverse kinematics of the system, left (a): the arctan-
gent function as given in (10), where υi is the remapped joint angle;
and right (a): converting the joint angles back to the joint space (11)
where they are restricted by the joint limits. (b) shows the control
loop of the inverse kinematics, it takes the desired tooltip position xd

and initial joint angles Θ0 as inputs and outputs the corresponding
joint angles Θ by minimizing error ε, k is a constant gain and the
pseudo-inverse, constrained Jacobian is J† (υ).

vector of the Cartesian velocities) and Θ̇ (the vector of
the angular velocities) as

ẋ = JΘ̇, (8)

here the time derivative is denoted by the (˙) operator. In
(8), J ∈ IR6×j is defined as:

J =
∂x

∂Θ
=



∂0
tp1
∂θ1

∂0
tp1
∂θ2

· · · ∂0
tp1
∂θj

∂0
tp2
∂θ1

∂0
tp2
∂θ2

· · · ∂0
tp2
∂θj

∂0
tp3
∂θ1

∂0
tp3
∂θ2

· · · ∂0
tp3
∂θj

∂0
cp1
∂θ1

∂0
cp1
∂θ2

· · · ∂0
cp1
∂θj

∂0
cp2
∂θ1

∂0
cp2
∂θ2

· · · ∂0
cp2
∂θj

∂0
cp3
∂θ1

∂0
cp3
∂θ2

· · · ∂0
cp3
∂θj


. (9)

Joint angles must be found for the manipulator that sat-
isfy the desired tooltip and constrained point positions.
These joint angles must be achievable for the physical ma-
nipulator. In this formulation, the joint limits will be con-
sidered during the inverse kinematics to find a feasible so-
lution. This is done by converting the joint angles to a
different variable that saturates as it approaches a joint
limit. The variable is then converted back to the original
joint space where it is now bounded by the limits.

First, let θui and θ`i be the upper and lower limits of
joint i respectively. The desired transformation function
used to convert the joint angles to a new space must be
continuously increasing within the open interval

(
θ`i θ

u
i

)
.

The arctangent function is one that meets these criteria. It
is used by linearly mapping θi from the joint limits

(
θ`i θ

u
i

)
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to the open interval
(
−π2

π
2

)
by

υi(θi) = tan

(
π(2θi − θui − θ`i )

2(θui − θ`i )

)
(10)

which is shown in Fig. 2(a) on the left-hand side. The
inverse of (10) converts the transformed joint angle back
into physical joint angles θi as follows

ϑi(υi) = θi(υi) =
θui − θ`i
π

tan−1 (υi) +
θui + θ`i

2
. (11)

Note that θi is now bounded between the joint limits θ`i
and θui as shown in Fig. 2(a) on the right hand side and
is now denoted as ϑi.

To compute the inverse kinematics, a new Jacobian has
to be constructed based on the modified joint space. The
constrained Jacobian Jc is now computed as the partial
derivative of the task space for the transformed joint space
as

Jc(υ) =
∂x

∂υ
= J(Θ)dϑ, (12)

where J(Θ) is defined in (9) and dζ is a j × j diagonal
matrix given by

dϑ =


∂ϑ1

∂υ1
0 · · · 0

0 ∂ϑ2

∂υ2
· · ·

...
... 0

. . . 0

0 · · · 0
∂ϑj
∂υj

 , (13)

and
∂ϑi
∂υi

=
θui − θ`i
π(1 + υ2

i )
. (14)

Now the inverse solution of (8) can be found considering
the change of variable and the joint limits as:

υ̇ = J†(υ)ẋ (15)

where J†(υ) is the pseudo-inverse, constrained, Jacobian
matrix defined as

J†(υ) = Jc(υ)T
[
Jc(υ)Jc(υ)T + µI

]−1
(16)

where I ∈ IR6×6 is an identity matrix and µ ∈ IR+ << 1 is
a damping constant scalar used to avoid possible disconti-
nuity of the pseudo-inverse at a singular configuration of
the manipulator.

Let υd be a solution to a desired Cartesian position of the
tooltip and constrained point xd ∈ IR6×1, and ε define the
error between the desired and actual Cartesian position as

ε = xd − x. (17)

A proportional control law in the form of

υ̇ = kJ†(υ)ε (18)

guarantees that ε = xd − x → 0 (that is xd = x), and
thus υ approaches υd provided that the constant k is pos-
itive. This gives a least squared solution to (15) when the
Jacobian is full rank. The solution ensures that the υ̇ is
minimized given that (13) increases monotonically in the
open interval (θ`i θ

u
i ). The inverse kinematics process is

shown in Fig. 2(b), where the desired position and con-
strained point xd is given as an input along with the initial
joint angles Θ0. The error ε is calculated as the difference
between the desired position xd and the current position
x. The error is multiplied by the constant gain and the
pseudo-inverse Jacobian J† which gives the change in angle
υ̇. Integrating the change in angle and adding the initial
joint values provides the new joint values which just need
to be converted to the joint space through (11). This loop
is repeated until ε ∼= 0 at which point the joint angles are
sent to the manipulator.

This completes the inverse kinematics section. The in-
verse kinematics have been defined based on the forward
kinematics while applying the joint limits. The forward
kinematics were defined based on joint angles and the
physical structure of the manipulator. A 6 DOF (or greater)
robotic arm can now be controlled using a 3 DOF haptic
device through the inverse kinematics. The next step is
to generate haptic feedback based on the tooltip position
and expert demonstrations. The haptic feedback can then
be used to guide the user through the procedure.

3. Haptic Assistance from Expert Demonstrations

To guide the current operator with the help of expert
demonstrators, first the expert demonstrations have to be
collected. These demonstrations are the recorded tooltip
positions during the procedure. These points provide in-
formation about the path the demonstrator used to ac-
complish the specified task.

To provide assistance in the preferred directions of mo-
tion, we propose using the well-known concept of potential
fields introduced in [30]. The use of potential fields allows
the haptic feedback provided to be time-invariant; this is
very important because it keeps the surgeon in full control
of the operation, allowing them to make active adjust-
ments during the procedure such as: correct for possible
changes in the environment, deal with issues that did not
appear in preoperative imaging, or a change in the posi-
tion of the kidney or kidney stones, etc. The term inter-
action impedance defines the ratio of applied force to the
magnitude of deviation from the reference trajectory. It
allows adapting the haptic feedback properties by making
it more or less compliant in certain regions, while coopera-
tively accomplishing a task such as following a given path.
We propose to calculate the assistive forces based on a
non-parametric potential field function [30]. The forces
applied by the haptic device and its spatial impedance are
captured by a potential function gradient and curvature.
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3.1. Potential Field Functions from trajectory demonstra-
tions

Potential fields have been used to guide robotic manip-
ulators through actions given by human demonstrations.
These potential fields can also be applied as haptic feed-
back to guide the human user through an action. This
would allow the user to make their own path and have
an active role in the procedure while still receiving infor-
mation from experts. This time-invariant controller with
bounded force range guarantees that the robot is stable
when in contact with passive environments.

The tooltip position is used as an index to get the haptic
feedback that needs to be applied to the user based on the
location of the tooltip in 3D space.

All of the re-sampled demonstration data points can now
be concatenated in a single vector ξd ∈ IR3×N , where N
is the total number of demonstration data points from all
demonstrations. The nth column in ξd is given by

ξnd =
[
0
tp1

0
tp2

0
tp3

]T
. (19)

The potential field has to be created for a specified workspace
whose points in 3D space are denoted ξ ∈ IR3×k in which
ξ represents the 3D Cartesian coordinate of a point within
the defined workspace boundary and k is the total num-
ber of points used to represent the workspace. The higher
the k value is, the higher the resolution and smoothness of
the potential field, at the cost of computational time and
memory usage.

A potential energy field φ is generated for demonstration
point n as follows:

φni (ξ) = φn0 +
1

2
Sn (ξi − ξnd )

T
(ξi − ξnd ) ,

∀n ∈ 1 . . . N, ∀i ∈ 1 . . . k
(20)

where the stiffness and the initial potential energy for the
nth data point, are defined as Sn and φn0 respectively and
ξi is the ith entry in ξ.

A Gaussian Kernal is used to create a weighting element
for each demonstration point as

ωni (ξ) = e
− 1

2(σn)2
(ξi−ξnd )T (ξi−ξnd ) ∀n ∈ 1 . . . N, ∀i ∈ 1 . . . k,

(21)

in which, σn ∈ IR+ is a smoothing parameter that con-
trols the region of influence for the nth data point. Using
weighted sums, the potential field Φ ∈ IR1×k at ξ can be
computed using element-wise multiplication and division
as:

Φ(ξ) =

∑N
n=1 ω

n (ξ)φn (ξ)∑N
n=1 ω

n (ξ)
. (22)

One can also implement a dissipative field in the form of
a controllable damper parameter to take into account the
robot’s speed in the haptic forces. The damping element
ψn is created for each demonstration point n as follows:

ψn
(
ξ̇
)

= Dnξ̇ (23)

(a) Three demonstrations (b) Potential field

(c) Gradient of Potential Field (d) 3D example

Figure 3: Potential field construction starting with 2D reference tra-
jectories (a) shows three sample demonstrations, in (b) the potential
field for the three demonstrations is shown along with the potential
field projected onto the bottom plane. Plot (c) represents the gra-
dient of the potential field. The length of the arrow is determined
by the magnitude at the gradient of that point. Plot (d) shows an
example of a three dimensional demonstration (the black line in the
centre), where the arrows again represent the gradient that is taken
of the potential field.

where Dn is a dissipative gain and ξ̇ is the velocity at ξ.
These damping elements are then combined similarly to
the way that the potential fields are combined to generate
a dissipative field Ψ ∈ IR1×k by computing the weighted
sums for element ξ using element-wise multiplication and
division as:

Ψ
(
ξ, ξ̇
)

=

∑N
n=1 ω

n (ξ)ψn
(
ξ̇
)

∑N
n=1 ω

n (ξ)
. (24)

Finally, the dissipative field and the potential field are
combined to create a force field that will be used to apply
a force that guides the user along a desired trajectory ξd.
The Force field is generated by subtracting the dissipative
field from the negative gradient of the potential field as
follows:

F = −∇Φ (ξ)−Ψ
(
ξ, ξ̇
)

(25)

where ∇ is the gradient. In Fig. 3(b) an example of a
potential field Ψ is shown, while in Fig. 3(c)&(d) the
arrows are the force F. The force field will now be used as
a lookup table when providing haptic assistance.

The reference trajectories are obtained from demonstra-
tions given by experts. These demonstration points, how-
ever, are not evenly distributed in 3D space. This means
that the sample points may be clustered together in one
area while being spread apart widely in another. This un-
evenness can lead to some areas being too heavily weighted.
Because of this, the demonstrations should be re-sampled
so that all of the points are evenly spread apart. Alterna-
tively, an optimization method can be used to assign the
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Table 1: Modified Denavit-Hartenberg Parameters for Meca500

i 1 2 3 4 5 6 t c unit

αi−1 0 -90 0 -90 90 -90 -90 -90 deg
ai−1 0 0 135 38 0 0 0 0 mm

di 135 0 0 120 0 70 −L −` mm
θi θ1 θ2-90 θ3 θ4 θ5 θ6 0 0 deg

ideal value of stiffness S and smoothing parameter σ to
each demonstration to generate a smooth potential field
such as in [30].

Since each demonstration point is composed of three
Cartesian coordinates, the potential field will exist in the
fourth dimension. This increase in dimensionality is shown
in Fig. 3(a)&(b), part (a) shows several two-dimensional
demonstration points while part (b) shows the potential
field that was built for these sample demonstrations; note
that the potential field is three dimensional.

After the gradient is taken of the potential field the
dimensionality returns to that of the demonstrations, as
shown in 3c&d the arrows representing the gradient of the
potential field, are all two-dimensional for the 2D demon-
strations and three-dimensional for the 3D demonstrations.

3.2. Using potential fields for haptic assistance in PCNL

Since it is a 3 DOF haptic device it outputs three Carte-
sian coordinates to the inverse kinematics. Given a set
of reference trajectories, the potential field forces can now
be used to provide haptic assistance based on the tooltip
location. As the user controls the robot’s tooltip using a
haptic device they receive feedback based on its location to
help direct them towards the optimal path. The force field
does not control the robot directly and a human is kept
in full control of the actual robot position. Therefore, the
haptic device receives two inputs, one from the user and
the other from the force field; this is shown in Fig. 4(b).

4. Experimental Validation

The experimental setup is shown in Fig. 4(a). The
setup consists of a 3-DOF Novint Falcon, a 6-DOF robotic
manipulator, the Meca500R from Mecademic (Montreal,
CA), and a phantom kidney kindly provided by Marion
Surgical. This setting does not reflect a surgical setting as
the scope of this paper focuses on training and skills de-
velopment in a cyber-physical environment. The modified
Denavit-Hartenberg parameters used in the inverse kine-
matics can be found in Table 1 and the joint limits are
summarized in Table 2.

The control loop used during experimental trials with
haptic feedback can be seen in Fig. 4(b); for those trials
without haptic feedback there is simply no feedback loop.
During the user trials, the haptic device sends its 3D posi-
tion to the computer which then processes it and uses it as

(a) Experimental set-up used to perform the user trials with the
robotic arm, the haptic device and the phantom kidney

(b) Control loop used during experiments

Figure 4: Experimental setup (a), does not depict a clinical setting,
rather represents the equipment and relative position used during the
user trials including ¬ the haptic device, ­ the robot, ® the kidney
model, ¯ phantom kidney stones in the kidney model, ° the tool used
during experiments, ± the tooltip, ² the constrained point along
the tool; (b) shows a general loop of how the system operates and
provides haptic feedback to the user based on the robot’s position.

the desired tooltip position in the robot’s inverse kinemat-
ics. A demonstration of the procedure is done where the
tooltip information is collected. This is done by collecting
the joint angles of the manipulator during the procedure.
The tooltip information is determined by applying the for-
ward kinematics to the collected joint angles; this assumes
that the tool is perfectly rigid. The data from the demon-
stration is used to generate the potential field that will be
used to provide the haptic feedback. A user very familiar
with the existing system and the ideal trajectory provides
the demonstration. Once the potential field has been con-
structed the robot tooltip position is the input into the po-
tential field function to get the required haptic assistance
force to be applied to the haptic device. The computer
uses an Intel i7 processor and GeForce RTX 2080 GPU.
Communication between the computer, the haptic device,
and the robot is handled by the Robot Operating System
(ROS).

4.1. Joint Limit Experimental Validation

An experiment is performed to validate the effective-
ness of the proposed constrained inverse kinematics. Two
trials need to be conducted to observe the effects of the
joint limits. The first only uses the default joint limits
of the manipulator (see Table 2, Default rows), these lim-
its are determined by the manufacturer based on avoiding
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Table 2: Robot joint limits given in radians for the joint limit vali-
dation experiments

joint i 1 2 3 4 5 6

Default θ`i -3.05 -1.22 -2.36 -2.97 -2.01 -π
Default θui 3.05 1.57 1.22 2.97 2.01 π

Modified θ`i -1.00 -1.22 -2.36 -2.97 -2.01 -π
Modified θui 0.4 1.57 1.22 2.97 2.01 π

collisions or the rotational limit of the motors used when
constructing the manipulator. During the second experi-
ment, joint 1 is further limited (see Table 2, Modified rows)
from −3.05 to 3.05 rad to −1 to 0.4 rad to demonstrate
the response of the inverse kinematics as a particular joint
approaches its limit.

The tooltip reference trajectory during these experiments
is a path defined such that under the Default joint con-
straints the joints do not reach their limits. The trajectory
can be found in the bottom right of Fig. 5.

Fig. 5 shows that as a joint approaches its limit, it be-
gins to saturate. To achieve the desired position, the in-
verse kinematics finds an alternative joint configuration to
compensate for the limited joint. It can be noted that
the constrained and unconstrained angles are initially the
same, and as time goes on the angles of each joint begin
to change relative to the original; thus, compensating for
the limitation imposed on joint 1.

4.2. Constrained Workspace Evaluation

The second set of preliminary experiments evaluated the
reachable workspace inside the kidney model. The con-
strained tooltip workspace was determined by consider-
ing the phantom kidney volume and determining which
points within it are achievable when the RCM is set at the
entry point. The previously validated inverse kinematics
were used to attempt to reach points within the phantom
kidney volume. This data was used to create the tooltip
workspace shown in Fig. 6.

The workspace shown considers a tool-tip position in the
robot’s workspace when the angle between the tool and the
surface of the kidney is no less than 20◦. All of the axis
and coordinates are given relative the the robot’s reference
frame which considers the origin to be at the center of the
robot’s base.

As can be seen, most of the kidney volume can be ac-
cessed through the same entry point. The peak of the
workspace (yellow region of the contour plot) is the loca-
tion of the entry point. There is an additional concavity
in the workspace behind the entry point; this is due to the
kinematic constraints of the robot.

4.3. Experimental Scenarios for User Trials

Three different experiments were performed to validate
the functionality of the system. They were done both
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with and without haptic feedback. There were sixteen
participants, 12 males, 4 females ranging in age from 18
to 31 with the average age being 24, are separated into
3 groups. The participants in each group were exclusive
to that group and only provided data for their assigned
group. Each participant completed 5 trials in total, the
first 3 trials were training while the last 2 trials were used
to evaluate the performance of each group. Every user
completed the same scenario in each trial; the goal in each
trial is to reach a particular kidney stone. The user who
provided the demonstration data for the potential field was
not a participant in the actual tests; they only provided
the demonstration data.

Group 1 (6 participants): The first group performed all
5 trials without any haptic assistance. The data collected
from the last two of these trials is the control data to
compare the other groups against.

Group 2 (5 participants): The second group had haptic
feedback during all 5 trials. This provided information on
the effectiveness of haptic assistance when compared to
those without it.

Group 3 (5 participants): Finally, the third group com-
pleted their 3 training rounds with the haptic assistance
and then two evaluation trials without assistance. This
was done to evaluate how well participants learned from
the haptic assistance and to analyze if there were any last-
ing improvements in skill compared to those without hap-
tic feedback.

The stiffness of the potential field used to derive the
haptic feedback was kept constant during all trials.

4.4. Experimental Procedure for User Trials

Users are expected to use the haptic device to control
the six DOF robotic manipulator. A sheath located on
the top surface of the kidney model is the entry point into
the tissue ² in Fig. 4(a). Users were requested to manip-
ulate the tooltip through the sheath towards the phantom
kidney stones ¯ in Fig. 4(a). The procedure had 3 phases:

1. The tool was initially located outside of the kidney
model. During this phase, the constrained point was
just above the tooltip and was moved along with it
such that the tool remains vertical. The 3D position
of the haptic device controlled the position of the
tooltip;

2. Once the user had positioned the tooltip inside the
sheath, the user pressed a button and the tooltip
location was recorded as the entry point in the tissue.
The constrained point was then fixed and assigned
the recorded entry point position.

3. The user further manoeuvred the tooltip towards the
kidney stones. The 3D position of the haptic device
controlled the 3D position of the tooltip while the
constrained inverse kinematics ensured that the tool
shaft passed through the constrained point.

An example of the haptic feedback provided to a user is
shown in Fig. 7. In Fig. 7(a), the haptic feedback (grey
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left), while the magnitude of the haptic feedback is given as a grey
line (its y-axis is on the right).
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arrows) is always directed towards the optimal path (the
black solid line). Plot (b) shows the absolute error between
the user’s trajectory and the optimal path.

The magnitude of the applied haptic feedback was roughly
proportional to the error. Due to how the potential field
was constructed, with a slight pull along the optimal tra-
jectory and varying spatial stiffness, the haptic feedback
was similar to but not perfectly proportional to the user’s
error. When the user is in phase 1, moving towards the
entry point, the haptic feedback provided should feel like
a funnel due to the stiffness of the potential field being
kept low and linearly increased up to the entry point. As
the stiffness increases, larger force feedback is felt when
the user diverges from the ideal path. At the entry point
and through the flesh of the kidney model, the stiffness
was kept constant; this is the highest stiffness used when
generating the force feedback. While inside the kidney,
phase 3, the feedback resembles a tube-like structure with
relatively firm walls. The stiffness is linearly decreased
somewhat once the tooltip has passed through the sheath,
then the stiffness is constant inside the kidney.

4.5. Assessment Criteria for User Trials

Six different metrics are used to compare the experimen-
tal results between groups of participants. These metrics
are largely based on those described in [31]. To begin,
let the collected data points of the tooltip be ξt ∈ IR3×M

where M is the total number of collected data points for
one trial, now the mth column can be represented by:

ξmt =
[
0
tp1

0
tp2

0
tp3

]T
. (26)

The 5 assessment criteria can now be defined as:
Criterion 1 is the time to complete task, ttot, i.e., the

total time needed to reach the goal;
Criterion 2 is the distance the tooltip travels, i.e., the

path length ξL, given by:

ξL =

M∑
m=2

|ξmt − ξm−1
t |, (27)

where the magnitude of a vector
(
ξmt − ξm−1

t

)
is given as:

|ξmt − ξm−1
t | =

√(
ξmt − ξm−1

t

)T (
ξmt − ξm−1

t

)
. (28)

The magnitude of the tooltip’s velocity ν ∈ IR1×M at every
point can be computed as the first time derivative of ξt by:

νm =

∣∣∣∣ξm+1
t − ξm−1

t

2δt

∣∣∣∣ ∀m ∈ 1 . . .M, (29)

where δt is the time step from one data-point to the next,
assuming the time step is constant for all data-points. Cri-
terion 3 can now be defined as the average velocity νµ,
i.e.:

νµ = ν =
1

M

M∑
m=1

νm. (30)
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Figure 8: An example of a user’s actual trajectory compared with
their idealized trajectory. The dashed blue line is the idealized tra-
jectory while the dotted black line is a user’s actual trajectory during
one trial.

The magnitude of motion acceleration a ∈ IR1×M can be
defined similar to velocity with the main difference being
that acceleration requires the second time derivative of
ξt as opposed to the first time derivative. Therefore, the
vector of motion acceleration magnitudes can be computed
by:

am =

∣∣∣∣νm+1 − νm−1

2δt

∣∣∣∣ ∀m ∈ 1 . . .M, (31)

Now, Criterion 4 is defined as the mean acceleration,
that is:

aµ = a =
1

M

M∑
m=1

am (32)

Criterion 5 is related to the user’s deviation from an
idealized version of their trajectory. The idealized ver-
sion ξI removes small redundancies and tremors leaving a
close approximation to what the user intended to do. It
is created by applying the Savitzky-Golay smoothing algo-
rithm that fits a polynomial curve to sets of data points.
An example of an idealized trajectory can be seen in Fig.
8, where the smooth blue line is the idealized trajectory
based on the actual trajectory (the dotted black line).

Using the idealized version of the path the magnitude of
the user’s deviation ε ∈ IR1×M for every point is defined
as:

εm =
∣∣ξmt − ξiI ∣∣ ∀m ∈ 1 . . .M, (33)

where ξiI is the closest point along ξI . The average devia-
tion is given by:

εµ = ε =
1

M

M∑
m=1

εm. (34)

Finally, criterion 6 is the targeting accuracy for each
user. This considers the approximate location of the phan-
tom calculi εc and finds the closest data point from the user
trial. As such the targeting accuracy TA can be defined
as:

TA =
∣∣εc − εkt ∣∣ , (35)
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Table 3: Average and standard deviation for each assessment crite-
rion and targeting accuracy (denoted TA)

unit Group 1 Group 2 Group 3

ttot sec 52.07± 28.09 32.98± 10.89 44.49± 16.83

ξL mm 257.65± 64.92 178.32± 29.81 232.97± 58.84

νµ mm/s 5.28± 1.91 5.32± 1.49 5.31± 2.01

aµ mm/s2 22.58± 8.65 21.66± 5.12 24.53± 11.46

εµ mm 1.63± 0.32 1.28± 0.33 1.48± 0.23

TA mm 1.13± 3.03 2.22± 1.26 0.72± 0.94

where ∃k ∈M 3
∣∣εc − εkt ∣∣ ≤ |εc − εmt | ∀m ∈M .

These criteria can now be used to evaluate the perfor-
mance of the three different experimental groups to de-
termine the effectiveness of the haptic feedback on per-
formance, skill acquisition, and path consistency between
experimental trials.

5. Results and Discussion

5.1. Experimental Results

The results from the last two trials of every user can be
found in Fig. 9 and Fig. 10, as box-plots. At the top of
Fig. 9 is the path length as determined by (27). Second
from the top in the figure, is the total time to complete
each trial. In the middle of the figure is (34) which is
the average deviation per trial between the user’s actual
motion and the idealized version of their trajectory. Aver-
age velocity is the plot second from the bottom in Fig. 9,
which was calculated in (30). At the bottom of the figure
is the average acceleration (32) per trial. Lastly the tar-
geting accuracy is shown in Fig. 10; the results are similar
between each of the three groups. However, more consis-
tent targeting was achieved by group 3, this suggests that
the training with haptics leads to a much better under-
standing of the target position and the particular motion
required to reach it. It should be noted that while the tool
was considered to be rigid; it did bend when approaching
the phantom calculi, which can lead to less accurate results
when comparing the tooltip location to a static location
in space. The average and standard deviation for each
assessment criterion per group are summarized in Table 3.
For each evaluation criteria the table contains the mean
for the respective group along with its standard deviation.

5.2. Discussion

The experimental results obtained from a total of 32
trials and 3 independent groups reveal that, overall, users
who receive haptic assistance perform better on average
according to the assessment criteria specified earlier. The
results further suggest that haptics is an effective way of
developing surgical skills in the context of teleoperated
PCNL.
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Figure 9: Box-plots of the experimental results for the last two trials
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The most evident benefit of haptic assistance can be seen
in the time taken to complete the procedure as shown in
Fig. 9. The addition of haptic feedback (group 2) made
all trials more consistent when compared to those without
haptic feedback (group 1). This claim is further supported
by the fact that group 3 outperformed group 1. The results
indicate that the subjects from group 3, who are trained
with haptic feedback and are evaluated without it, did
better than those who never experienced the haptic assis-
tance. This suggests that group 3 demonstrates the degree
to which users can learn from the haptic feedback.

Path length is another indicator of the effectiveness of
the haptic assistance on user performance. Both the mean
and the variability of the path length decrease with haptic
assistance. Additionally, the lower median and variability
of group 3 compared to group 1 is recurrent evidence of
learning from the haptic assistance.

The mean deviation from the idealized path for each user
trial follows the same trends as described for time and path
length. A lower average deviation and range suggests that
fewer redundant motions occurred during the procedure.
It further implies that the path taken is smoother com-
pared to those without haptic assistance or training (such
as group 1). Finally, the average acceleration and velocity
decrease with haptic assistance and training, which is an-
other indication of smoother trajectories and motion dur-
ing the procedure.

The targeting accuracy criterion indicates the effective-
ness of learning from the haptic feedback. Once the haptic
feedback was removed users were able to reach the phan-
tom kidney stone with very consistent results. Group 2,
who had haptics during every trial, did manage to target
the kidney stone with slightly higher accuracy than the
participants in group 1. Although participants in group 1
have a lower median targeting accuracy, they have a stan-
dard deviation larger than double the standard deviation
of group 2, as can be seen in table 3.

6. Conclusion

Although PCNL is the leading procedure used for the
management of urinary calculi for large and irregularly
shaped urinary stones, it remains a challenging procedure
to learn and perform efficiently. A fully automated system
would pose an increased risk to patients due to unmodelled
aspects of the surgical environment. In addition, they re-
quire accurate alignment of the optimal path to patient
anatomy, [11] considers this issue and found they had a
15.8 mm position error and 4.12◦ orientation error. This
paper introduces a collaborative human-robot teleopera-
tive training framework to assist the surgeon and teach
surgical skills. It has two integrant parts: The constrained
inverse kinematics that decouples tooltip orientation and
position using a remote centre of motion, and haptic assis-
tance from past demonstration(s) based on data collected
from the slave. This was experimentally validated with 16
participants and 80 trials.

Constraining the entry point in the kidney effectively
allowed users to use a 3-DOF device for a procedure that
required 6-DOF. This allows the workload to be shared be-
tween the surgeon and the robot while preserving the sur-
geon’s control over the tool-path. This reduces the cogni-
tive load on the surgeon during the procedure which makes
it possible for them to be more receptive towards haptic
feedback [32]. Experimental results obtained with haptic
feedback consistently have shorter path lengths, shorter
time for the procedure, a lower average deviation, and
more consistent velocity and acceleration during the proce-
dure. The group trained with haptic assistance performed
better than those without, however, not as well as those
who had haptic feedback for all trials. By most evalu-
ation metrics they had a worse median value and larger
variability; these problems were even more exaggerated
in the group who never experienced any haptic feedback,
thereby suggesting that haptic feedback reduces redundant
motions during a procedure and can help teach inexperi-
enced users.

Future work will explore the use of teleoperated PCNL
under 2-dimensional ultrasound image guidance and semi-
autonomous visual servoing for tool tracking. Further, this
framework will be integrated with Marion Surgical’s exist-
ing PCNL surgical simulation [10]. Simulation collected
data from experienced surgeons will serve as the optimal
tooltip path in the potential field functions for different
simulated conditions to guide a teleoperated robotic arm
and make it perform the surgery either autonomously or
under teleoperated human supervision.
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