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ABSTRACT Ultrasound-guided percutaneous nephrolithotomy (PCNL) is a minimally invasive procedure
to remove large kidney stones through an incision in the patient’s back. PCNL requires a high level of
dexterity to steer a surgical tool while visualizing it using ultrasound images. A robotic system that controls
the ultrasound probe to automatically image the tool would alleviate the surgeon’s cognitive workload and
potentially lead to more accurate kidney access.

We propose a novel algorithm that combines visual servoing and confidence maps to track the position of a
manually steered needle using a robotically actuated ultrasound probe. The algorithm automatically adjusts
the position of the ultrasound probe so that the same longitudinal portion of the needle shaft is visible in
the image, while simultaneously ensuring acoustic contact between the ultrasound probe and the tissue over
uneven surfaces. Unlike previous methods, where confidence maps were used for probe positioning with
static targets, this paper introduces the first unified algorithm that optimizes image quality while tracking
a moving tool. It ensures continuous probe-tissue contact on uneven surfaces and does not require prior
knowledge of the needle’s trajectory or additional sensors. The algorithm, evaluated in phantom tissue
and in a realistic kidney mannequin, shows an average tool tracking accuracy of 1.65 mm and 1.17 mm,
respectively, confirming its ability to reliably track a manually inserted tool during PCNL.

INDEX TERMS Ultrasound imaging, visual servoing, confidence maps, needle tracking, robot-assisted
surgery, percutaneous nephrolithotomy

I. INTRODUCTION

ERCUTANEOQOUS nephrolithotomy (PCNL) is a type of

minimally invasive surgery where the surgeon punctures
the skin and passes down needles or other tools to remove
large kidney stones through an incision in the patient’s
back. Unlike open surgery, in PCNL the surgeon relies on
ultrasound (US) or fluoroscopy (real-time X-ray) images
to track the location of the tool relative to the target. In
North America, fluoroscopy has been the preferred imaging
modality for needle guidance during kidney access. Although
easy to operate, it exposes patients and interventionists to a
significant level of radiation [1], [2]. Moreover, single-plane

imaging and difficulties in visualizing organs adjacent to the
kidney make kidney access challenging and pose the risk of
accidental injury [3], [4]. In Asia and Europe, US-guided
PCNL (usPCNL) is an emerging alternative to fluoroscopy.
With US images the surgeon can detect radiolucent stones
and delineate the adjacent viscera, the anterior, and the
posterior calyces with greater accuracy than fluoroscopy, all
in a radiation-free setting [5].

UsPCNL requires an increased level of dexterity compared
to fluoroscopy. The surgeon must precisely coordinate the
position and orientation of the US probe and needle to keep
the latter in the imaging plane while simultaneously steering
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it toward the calyx [6]. To alleviate the surgeon’s cognitive
workload, robotic assistance has been proposed for percu-
taneously steering a needle in a wide range of US-guided
interventions [7]-[13]. For example, robotic assistance has
been applied to kidney access, prostate brachytherapy, and
ablation of liver and kidney tumours [14]-[20] and has also
been considered for tool and organ imaging [21]-[25].

To control the US probe position and orientation based
solely on real-time US images, different variations of visual
servoing (VS) have been used. In VS, the goal is to determine
the required probe’s velocity so that the real-time image
converges to a desired image of the needle or organ. To
this end, a set of image features that provide quantitative
information about a particular characteristic of the image are
defined. These features are then compared with the desired
features from a target image, and the error is calculated. The
optimal probe velocity is then determined to minimize the
error and make the real-time images converge to the desired
images. Applications of VS include needle imaging during
percutaneous cholecystectomy [26], scanning of peripheral
arteries [27], and approaches using 3D US images [28]. In
our previous work [29], we used VS to track the in-plane
motion of a needle in 3-DOF in a water tank.

Robot-aided US imaging requires sufficient acoustic cou-
pling between the US probe and the tissue. Force and
impedance control are commonly employed to ensure acous-
tic coupling while limiting the force applied to tissue [30]—
[32]. Force sensors are usually expensive and noisy, and the
measured force depends strongly on the sensor orientation
and US probe weight, requiring precise online calibration
[33], [34]. Furthermore, contact force control is usually only
implemented along the US probe’s longitudinal axis [35]-
[38], where the controller maintains a constant force but
neglects the resulting image quality. In practice, the body
surface is uneven and therefore it is desirable to orient the
probe orthogonally to the surface. This requires more ad-
vanced approaches such as trajectory planning using 3D sur-
face perception [39], human pose estimation using RGB-D
cameras [40], [41], patient-to-MRI registration for trajectory
planning [42], [43], contact posture estimation with optical
waveguide force sensors [44], solving an online optimization
problem for normal direction estimation [33], reinforcement
learning [45], or task-space compliance control [46].

Rather than relying on force sensors, it is possible to
quantify the probe/tissue acoustic coupling from quantitative
metrics of the US image itself. Confidence maps, initially
proposed by Karamalis et al. [47], are pixel-wise probability
maps showing the reliability of detected features or regions
within an image. Chatelain et al. [48] used confidence
maps to orient an US probe during teleoperation to achieve
optimal image quality and to maintain a target centred in
the image in an automated imaging algorithm. With a similar
approach, confidence map is also used by Jiang et al. [49] to
optimize the in-plane orientation of the probe in an automatic
positioning task. While useful to locate and image a fixed
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FIGURE 1. US-based needle tracking on a kidney mannequin. a) The
setup with a robot arm, an US machine, and a needle guide. b) All
coordinate frames: A force sensor frame ° 7 is defined at the centre of the
sensor, a probe frame P F is placed at the centre of probe imaging end,
and a probe gravity frame & 7 is defined at the probe’s centre of mass.

(b)

target in the tissue, confidence maps have not been combined
with VS to track a moving object such as a needle.

In this paper, we extend the concept proposed in [48] to
create a combined confidence map/VS algorithm to track a
surgical needle using 2D longitudinal US images while main-
taining acoustic coupling with an uneven surface. Although
VS and confidence maps have been used separately for
needle tracking and ensuring acoustic coupling, respectively,
an approach where both algorithms work concurrently and
without the need for a force sensor has not been proposed
before. Our algorithm accounts for needle motion in 3 de-
grees of freedom (3-DOF), that is, two in-plane translations
and one in-place rotation, and replaces the force control for
vertical movement with a confidence-based feature.

The key contributions of this paper include 1) a novel
confidence-based control strategy that dynamically adjusts
the probe’s position and orientation to maintain optimal
acoustic contact and visibility while tracking a manually
steered needle, 2) a sensorless visual tracking system that
eliminates the need for calibration, filtering, or registration
procedures, and 3) real-time performance at 25 fps, match-
ing standard ultrasound imaging rates. To the best of our
knowledge, this is the first time that confidence maps and
VS are merged to track a manually steered needle with
surface contact control while optimizing image quality. The
algorithm operates solely based on longitudinal US images,
without prior knowledge of the needle trajectory, tip position,
or additional position sensors. This makes the system easier
to integrate into clinical workflows compared to methods that
rely on external sensors.

As in our previous work [29], an US probe is attached to a
robotic manipulator and controlled to follow the longitudinal
plane of a moving needle, with the configuration shown
in Fig. 1. Image features are extracted from real-time US
images. The algorithm determines the required linear and
angular speeds of the US probe based on the difference
between the desired and current image features, ensuring that
the needle is always visible in the images. A major limitation
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of our past work was that the tissue was assumed to be a
flat surface. In this paper, the concept is expanded to an
uneven surface and confidence maps are used in conjunction
with VS to ensure acoustic contact during tracking. The
paper is organized as follows. The next section introduces
the unified VS and confidence map algorithm along with the
robot control law. The experimental setup using a realistic
kidney phantom and agar tissues is presented along with the
results. Finally, we discuss the contributions of the work and
recommendations for future work.

Il. UNIFIED NEEDLE TRACKING AND SURFACE
CONTACT CONTROLLER

During usPCNL, seeing the needle’s tip is crucial for precise
puncturing. Seeing the needle’s shaft ensures that the needle
is aligned with the imaging plane and that the end of the
visible portion of the needle corresponds to the needle tip.
Therefore, the objective of the controller is to track the
needle using longitudinal US images, while maintaining
acoustic coupling between the tissue and probe.

Consider an US probe attached to a robotic arm as in
Fig. 1(a). The goal of the controller is to find the velocity of
the robot’s end effector required to keep the imaging plane
aligned with the needle shaft. Let the velocity vector be:

v=1[v v, w]T, (1

where v, and v, are the translational velocities of the probe,
and w, the rotational component of probe velocity, along the
x, Yy, and z axes of a given reference frame, respectively.

Considering the VS algorithm with the velocity vector v
defined in the probe frame PF and assuming s € R? to be a
vector of measurable and differentiable image features, these
two vectors can be related as:

s = Lyv, @

where L, € R3*3 is the interaction matrix representing the
relation between v and s. If the vector of desired features is
s*, the error between the desired and current image features
is e = s* — s, and the control action is:

v=K,Ll(s* —s), (3)

where K, € R**3 is a positive diagonal matrix and L] is the
pseudo-inverse of L. The error can be shown to decrease
exponentially, making the features extracted from the real-
time images converge to the desired features.

Traditionally, the interaction matrix is made up of the
partial derivatives of the image features with respect to the
camera speed, and then inverted to find the control action.
Here, we used a different approach where Ll in (3) is
arbitrarily chosen among possible generalized forms, such
that the probe velocity can be directly written as a function
of the image feature error [48]. In this way, it is not necessary
to compute the inverse of L, which provides more flexibility
in the design of the control law. Fig. 2 depicts the proposed
control approach. The next step is to define appropriate
image features to establish the control law.
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FIGURE 2. Block diagram of the proposed algorithm. Real-time US
images are used to calculate intensity-weighted (IW) and
confidence-weighted (CW) features, which are sent to the VS controller to
determine the US probe’s speed. The VS control gains are updated
according to the current feature values and force constraints.
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FIGURE 3. a) and b) US image with partial probe/tissue contact (first row).
The orange line shows the area of no contact. The second row shows the
corresponding confidence map indicating low confidence in the
no-contact area. c) US image with full probe-to-tissue contact and its
confidence map, showing the needle as a reflective object. The green line
shows an area with high confidence as a result of acoustic coupling, and
the orange line shows low confidence beneath the needle.

(a) (c)

A. ULTRASOUND IMAGE FEATURES DEFINITION

Image moments of different orders are widely used as image-
defining features in computer vision [50] and their choice is
essential to achieve convergence of the controller [S1]. We
propose to use two image moments: 1) intensity-weighted
calculated over the actual US image for the needle tracking,
and 2) confidence-weighted, calculated over the confidence
map of the US image to control the probe-tissue contact.

1) Intensity-Weighted Image Moments
The general form of an image moment of order ¢ 4+ j in a
greyscale image is:

mi; = / / 2y I(z,y)dzdy, 4)
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where (z,y) is the coordinate of each image pixel and
I(x,y) is their intensity. In [29] moment-based image fea-
tures were used to represent the needle pose in US images.
Here, we will use the same approach for tracking the needle
motion along the direction of needle insertion (z-axis). Since
the needle shaft must be visible to locate its tip, the first
feature is defined as the visible length ¢ of the needle shaft:

2
= 4\/ [Mzo + po2 + \/(Mzo — po2)> + 43 [, ()
moo

where

— __ Mmigmo1
Hi11 mii1 moo )
oo = Maog — =22 Loy = mog — =L
moo’ moo

By choosing the first row of Li in (3) as L} = [~1 0 0] the
control law for in-plane needle tracking can be defined as:

e = —ky (05— 0), ©6)

where ¢* is the desired ¢, and k, is the control gain.

2) Confidence-Weighted Image Moments

A confidence map is a pixel-based probability map that
shows which parts of the image are most reliable, helping
assess the certainty of the data across different parts of the
image. The complete algorithm can be found in [47]. The
probability of each pixel in the map depends on the tissue
properties but also on the path travelled by the acoustic signal
from that point. In our application, two main factors can
affect the confidence map. First, the loss of US signal due
to weak or improper acoustic contact will create an area of
low confidence below the section of the image where contact
was lost. Second, the existence of a strongly reflective object,
such as a needle, drops the confidence level beneath it. These
effects can be seen in Fig. 3.

Chatelain et al. used the angular coordinate of the barycen-
tre of confidence map to orient a 2D curvilinear probe and
optimize image quality [48]. Inspired by their work, we
define two confidence-based features to control the vertical
and rotational motions of the probe. Confidence-weighted
image moments of order ¢ 4+ j may be derived from the
confidence map similarly to (4) by replacing the pixels’
intensity with confidence values:

cmyj = // zt gyl C(z,y) dz dy, @)
H

where C(z,y) € [0,1] is the confidence of each pixel,
and H is a section of the image. Since these moments
are solely used for contact control, variations of the needle
position in the image should not affect them. Therefore,
‘H is arbitrarily defined to not include the needle. Two
corresponding image features can now be defined. The first
feature is the normalized confidence § in H. It quantifies the
contact between the probe and tissue as

-1 ®)

§ = (emoo)n

section H
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FIGURE 4. US image of the needle shaft (left) when the probe is in partial
contact with the tissue and the confidence map (right) where image
section # is shown. In this image, § = 0.42,and § = —10°.

where n is the total number of pixels in H. When the
US probe makes full contact with the tissue § — 1,
indicating higher confidence. As the probe loses contact,
6 — 0 indicates lower confidence. Therefore, we can use
0 to control the probe vertical displacement by choosing
LjS = [0 —1 0], as the second row of L in (3), and
defining the probe velocity along the y axis as:

vy = —ks (67 —9), C))

where 0* is the desired § and ks > 0 is a control gain. The
second feature gives the orientation of the probe with respect
to a vector normal to the tangent of the tissue surface as:

(10)

@ = arctan (cmw ~ (mia) (cm00)>

Cmo1

where x,,;4 is the horizontal middle point of the image. The
angle 6 can be employed for controlling the probe’s in-plane
orientation by choosing the third row of L in (3) as LZ =
[0 0 — 1], and defining the rotational component of probe
velocity about the z axis as:

w, = —ky (6* —0), (11)

where 6* is the desired 6, and kg > 0 is a control gain. If
0* = 0, the probe is controlled to align with a vector normal
to the tissue surface. Since the above is only valid when the
probe is in contact with the tissue, § must be greater than
a minimum value and (11) is reformulated with a Sigmoid
activation term that depends on ¢ as:

1
1+ oCmin—0)’
where 0,,;, is a predefined threshold and { >> 1 is a

coefficient of the sigmoid function. Fig. 4 depicts how these
three image features are defined based on an US image.

w, = —ky (0% — 0) (12)

B. FORCE CONSTRAINT

While the combined visual servoing and confidence map
algorithm does not require any sensors other than an US
probe, in this section we propose the optional addition
to constraint the vertical force f, the US probe applies
to the tissue. This inevitably requires the use of a force
sensor connected between the US probe and the robot. The
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Algorithm 1 Confidence-based VS for needle tracking.

Input: real-time 2D US image
QOutput: probe velocities v

Initializing:
Set desired features §* and 6*(= 0)
Set controller parameters: k¢, ks, kg, C, dmin, and fraz

Wait until the inserted needle becomes visible
Calculate desired needle length ¢* (5)

while needle is manually inserted do
Capture real-time US image
Calculate the confidence map
Extract features (5), (8), and (10)
Update variable gain matrix K,
Calculate probe velocities v (3)
end while

maximum force constraint can be applied by multiplying the
control law (9) by a Softplus activation function as:

vy = —ks (6" — 8) log [1 +elUma=f)] - (13)

The additional term in the above equation acts as a variable
control gain that increases with the difference between the
vertical force f, and maximum allowed force fy,q,. Force
fy is the second component of the force tensor in the probe
frame PF, that is fy = [0 1 0 0 0 0] Pf., where:

Pfext = IS)T (Sfraw - ZT gfg - sfoffset) ) (14)

and T and g I are the force/torque transformation matrices
from 3F to PF and from &F to 5F, respectively, with the
coordinate frames given in Fig. 1(b). For any two coordinate
frames a and b, this transformation matrix is defined as:

o [0

: Fta)x 2R IR
where "R and ®t, are the rotation matrix and the trans-
lation vector relating two coordinate frames. Here, [Pt.]x
represents the cross product or the skew-symmetric matrix
associated with vector Pt,.

Finally, needle tracking and contact control can be formu-
lated in a unified control algorithm taking the form of an
extended VS with variable gains, as in (3) where the feature
vector is s = [¢ § 0])T, Ll is a negative identity matrix
with its 3 rows defined by LZ, LJ;, and L;, and K, is a
diagonal positive definite matrix whose values are:

Fia=ke, ko= kslog [1+eUne=h]

15)

-1
Fag = ko |1+ cCCmn=0] (16)

The overall algorithm is briefly explained in Algorithm 1.
lll. EXPERIMENTAL VALIDATION
To validate the proposed method we used the setup shown

in Fig. 5, where a 40mm US probe (L15-7H40-AS5 from
Telemed Ultrasound, Vilnius, Lituania) is attached to the
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FIGURE 5. Scenario 1 (a) and 2 (b) using a 5% agar phantom tissue and
kidney mannequin, respectively. The needle is manually steered while the
robot autonomously orients the US probe to track the needle shaft and
ensure acoustic coupling between the probe and the tissue.

TABLE 1. Ultrasound image acquisition parameters

frequency  gain focus depth dyn. range  power

10 MHz 80 % 14-21 mm 40 mm 72 dB —4 dB

end-effector of a 6-DOF robot arm (Meca500 from Meca-
demic, Montréal, Canada) through a force/torque sensor
(Medusa FT from Bota Systems, Zurich, Switzerland). The
US machine streams images at 50 Hz according to the param-
eters given in Table 1. The algorithm is implemented on an
Intel(R) Core 17-9700K computer with a 3.20 GHz CPU and
128 GB of RAM. Matlab is used for US image acquisition
and robot control, with a sampling rate of 25 Hz. The robot
communicates with the computer via EtherCAT/TwinCAT3.
Two different scenarios are used.

Scenario 1 - Agar phantom experiments: In this scenario,
we use a phantom made of 5% agar with an arbitrarily
designed uneven surface; see Fig. 5(a). We ran 6 trials,
during which the needle was inserted from different points
in the tissue so that the topology of the tissue surface above
the needle was different in each trial. The needle is manually
inserted along a 10 cm path for 30s at a variable speed and
with some random back-and-forth movements.

Scenario 2 - Kidney mannequin experiments: In this
scenario, see Fig. 5(b), we use a renal biopsy US training
mannequin (CAE Blue Phantom, USA) to provide realistic
US images and replicate the human anatomy, including ribs,
the right kidney with surrounding tissue, and the immediate
renal system. The needle is manually inserted along a 7cm
path for 60s at a variable speed and with random stops
and back-and-forth movements. We ran 6 trials, each from
different insertion points so that the surface over which the
US probe slid was different in each trial.

To constrain the 18-G diamond-tip needle to in-plane
motion, a guide was fixed close to the insertion point in the
tissue so that the needle could not be moved laterally. Once
a small portion of the needle was inserted into the tissue,
the position of the US probe was adjusted until the inserted
portion of the needle became visible in the image. Tracking
then started as the needle was further inserted manually. The
desired needle length and normalized confidence were set to
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FIGURE 6. Results from 6 trials in Scenario 1. The top 3 panels show the measured and desired needle length ¢, normalized confidence §, and
orientation angle 6. The needle length is calculated from (5) and confidence-based features from (8) and (10). The middle panels show the US probe
displacement in P 7. On the bottom left are samples of the US images captured at 4 time steps and on the bottom right the force applied to the tissue.

/¥ = 17 — 22 mm and 6* = 0.45. The other controller
parameters were selected as follows: k, = 0.4, ks = 1.6,
kg = 0.1, ¢ =100, 0,nin = 0.35, and fi0 = 7 N.

IV. RESULTS AND DISCUSSION

Fig. 6 shows the results of the 6 trials in Scenario 1. The
first row shows the real-time and the desired image features.
Since the desired needle length £* was captured at the begin-
ning of each test (shown by the green dotted lines), £* varies
across trials. As we can see, while the needle is tracked the
features are kept close to the desired values. The second row
of Fig. 6 shows the measured displacement of the US probe
in PF, where x is the horizontal displacement of the probe
along its x-axis, y is the probe’s vertical movement following
the uneven surface, and 7, is the probe’s rotation around
its z-axis. The first image feature ¢ controls the probe’s
motion along the z-axis to keep the needle axis within the
imaging plane. In contrast, the vertical displacement y and
the rotation 7, are guided by confidence-based features to
maintain full probe-tissue contact on uneven surfaces. As a
result, the y and r, components are different between distinct
surface topologies. While the probe travelled approximately
100 mm along the z-axis in all trials, the exact motion trajec-
tories differed due to variations in the probe’s path and the
local surface geometry and interaction dynamics encountered
in each trial. Four US images captured at different time
steps during one of the trials are also shown (corresponding
to the lines in bold in the other plots). The bottom right
panel of Fig. 6 shows how the controller guaranteed that the
force was kept under the maximum allowed value. Fig. 7(a)

provides a statistical summary of the test results in Scenario
1, showing the range of calculated features in each test.
As shown in the plot, all three features exhibit variations
around their desired values. The variation in needle length
is primarily due to the needle’s random motion within the
tissue. In contrast, the variations in the other two features are
mainly attributed to the movement of the ultrasound probe
over the uneven tissue surface, which occasionally leads to
poor acoustic coupling. Despite these challenges, the median
error values and interquartile ranges demonstrate that the
proposed method is robust in maintaining feature stability
under varying conditions.

Fig. 8 shows the results of Scenario 2. The high variation
in the measured features is the result of imaging noise in
a realistic scenario. Yet, these features fluctuate around the
desired values ensuring successful tracking. While the probe
moved around 70 mm along the z-axis in all trials of this
scenario, the motion trajectories varied due to trial-specific
paths and differences in surface geometry. The vertical force
applied to the tissue remained below the maximum allowed
range. Fig. 7(b) shows a statistical summary of the results.

Table 2 provides a summary of experimental results with
the average values of medians and interquartile ranges of
features in all tests in both scenarios. The tracking error in
both test scenarios remains around 1.65mm and 1.17 mm
respectively, which is equivalent to less than 8% and 5%
variation in the visible needle length. In comparison, it is
significantly smaller than the allowable needle placement
error of 2.7 mm in targeted percutaneous surgeries [52] and
the freehand needle positioning accuracy of 4.6 £ 2.1 mm
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FIGURE 7. Calculated features in 6 trials of each scenario. The red line is
the median value, and the box shows the interquartile range.

in usPCNL [53], which confirms the functionality of the
proposed method in tracking the needle based only on real-
time US images.

A quantitative comparison of the achieved accuracy with
other reported methods is provided in Table 3. The imaging
modality in all methods is longitudinal 2D US. In con-
trast to our paper, three out of the five compared methods
rely on additional tracking sensors, and the other two on
deep learning and offline calibration. Although all methods
achieved comparable tracking accuracy, the proposed ap-
proach relies solely on 2D US images and eliminates the
need for additional sensors such as electromagnetic (EM)
or optical tracking systems that are widely used for needle
tracking [54]. Moreover, the test environment in all these
methods had a flat surface, and none of them dealt with
the probe-tissue acoustic contact in case of uneven surface
structures.

Previously reported methods addressing the probe-tissue
contact problem attempt to maintain a constant vertical force
but neglect the resulting image quality [30]-[37] or rely on
additional equipment to detect probe/tissue contact [39]—
[44]. In contrast, our method accounts for the unknown
tissue topology without additional sensors. Since the con-
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TABLE 2. Statistical summary of the experimental results

£* — ¢ (mm) ) 0 (deg)
Scenario  Med. (%) IQR  Med. (%') IQR Med. IQR
Sc. 1 -1.65 8%) 433 044 2%) 004 -259 1096
Sc. 2 -1.17 (5%) 658 043 (4%)  0.03 1.02  9.63

1Median error relative to desired values.

troller monitors image quality, our method can provide
better performance than force sensor-based approaches for
needle tracking and tissue imaging. Furthermore, contact
control with optimal probe orientation eliminates problems
associated with force sensor calibration.

Finally, unlike other methods that rely on additional
sensors to detect the position of the needle [7], [11], [13],
[14], our method does not need positional information of
the needle’s base or tip to track it. The proposed method
works at a 25fps rate, a similar frame rate to most US
machines, which meets the requirement of real-time image-
guided interventions [55]. This frame rate is also noticeably
higher than many other tracking methods (15.7 fps in [12],
18 fps in [13], and 15 fps in [56]), which makes the proposed
method suitable for real-time applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a unified confidence map and VS
method for in-plane needle tracking in a tissue with uneven
surfaces. The controller tracks the position of a needle
inserted into the tissue while ensuring sufficient acoustic
coupling between the tissue and the probe. It adjusts the
probe’s position and orientation in real-time to optimize
image quality and may use an optional controller to limit the
maximum contact force. The US probe is controlled in 3-
DOF—Ilongitudinal motion, vertical translation, and in-plane
rotation—to follow the distal end of the needle shaft and
maximize the transducer’s surface contact with the tissue.
The control law determines the US probe’s velocity based
on features obtained from real-time longitudinal US images
and their corresponding confidence maps, without requiring
prior knowledge of the needle trajectory. To the best of our
knowledge, this is the first unified confidence map and VS
algorithm that 1) ensures probe-tissue contact, 2) optimizes
image quality during needle tracking, and 3) operates without
additional sensors or trajectory information.

The method was validated experimentally in multiple
trials across two distinct scenarios, successfully maintaining
needle visibility in US images. For such an algorithm to
be used in real-time, low complexity and robustness are
essential. While previous methods have used depth cameras
or force control for surface modelling and contact control,
our method relies solely on widely accessible 2D US images
with a computational time below 40 ms, which is suitable for
real-time implementation without added resources.
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FIGURE 8. Results from 6 experimental trials in Scenario 2. The top 3 panels show the measured and desired needle length ¢, normalized confidence 5,
and orientation 6. The needle length is calculated in (5) and confidence-based features in (8) and (10). The middle panels show the US probe
displacement in P 7. The bottom left panel shows samples of the US images captured at 4 time steps for the trial corresponding to the bold lines in the
other panels. The bottom right shows the measured probe/tissue contact force.

TABLE 3. Comparison of the needle tracking/placement error through different methods

tracking method error [mm] test environment considerations
Yan et al. [12] deep learning (DL) 1.20 + 1.30 phantom and tissue motorized needle insertion / known velocity
Seitel et al. [14] EM tracking system 5 gelatin phantom needle targeting error is reported
Che et al. [11] optical tracking + DL 1.17 £ 0.70 ex-vivo liver tissue US probe position is fixed
Baker et al. [13] fibre-optic tracking sensor 1.10 £ 0.70 ex-vivo bovine tissue US probe position is fixed
Zheng et al. [10] simultaneous US-robot calibration 0.75 £ 0.27 tofu phantom requires prior sample data for calibration
Proposed method confidence-based visual servoing 1.65/1.17 agar / kidney mannequin manual needle insertion / moving US probe
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