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Abstract—One of the many challenges in autonomous
robots is that they can enter an error state and are unable to
continue operation without human intervention. Sensors in-
stalled on the robot enable proprioception and could help the
robot understand its error configuration. This paper proposes
a method to determine from these sensor measurements,
which are most critical in differentiating the error states such
that the robot could understand its predicament, and could
attempt at recovering without human aid. A classification
model is built using the forward stepwise method and a
scoring metric to overcome indecision in choosing between
different features. This modified method is applied to three
robot operating mode data sets. The experiments indicate an
improvement to the classifier performance when using this
the model built by the method compared to using all available
predictor variables (features). With further refinement, this
scoring metric could be a simple yet effective way to build
classification models for increasing robot autonomy.

Index Terms—Feature Extraction, Robot Failure Modes,
Discriminant Analysis, Fault Detection and Diagnosis

I. INTRODUCTION

Robotic automation increased efficiency, precision, and
safety in industrial settings by replacing humans in danger-
ous, difficult, and repetitive tasks. Robots are gaining the
ability to automate non-repetitive, complex, and abstract
tasks such as controlling autonomous vehicles [1] or in
autonomous robotic surgery [2]. A key aspect of advancing
robotic technology where it can be widely implemented in
these challenging applications is the development of robust
fault detection and prevention. Robotic system robots are
subject to actuation faults, such as singular configurations
and actuator deterioration [3] or execution failures like
insurmountable obstacles. When operating in an industrial
setting such fault may cause costly equipment damage or
manufacturing downtime, and with surgical applications,
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human life is on the line. It is, therefore, imperative for
the robot to be able to identify its own faults and diagnose
them.

In the field of Failure Detection and Diagnosis,
there are three general classes of methods: knowledge-
based, model-based, and data-driven approaches [4]–[6].
Knowledge-based systems use similar problem-solving
methods as humans. For instance, applying causal analysis
draws relationships between faults and symptoms such that
when a certain predefined fault behavior is observed the
system can easily identify it. This method successfully
automates the fault detection task but it is difficult to
implement as it requires a thorough understanding of a
system and its faults. Once implemented, the system can
only identify known faults and, to the authors’ knowledge,
has not been a method used for fault detection in robotic
manipulators. Expert system-based methods, on the other
hand, use a series of if-then statements. [7] present an
expert-system-based framework for failure mode analysis,
fault detection, tolerance, reconfiguration, and repair in a
robotic manipulator. Due to the binary, true or false, terms
used in their formulation, expert systems are sensitive to
uncertainties [6]. One way to improve the robustness of the
system is using a fuzzy expert system introduced in [8],
where binary statements are replaced with graded ones.

Knowledge-based systems struggle to identify unknown
faults as it requires supervised human expertise to deter-
mine what faults the robot expects, which makes them
difficult to implement and scale to more complex systems,
and consequently an unpopular method for fault detection
and diagnosis in robotic systems.

The most popular, the model-based approaches, use
a model of the system to simulate processes to detect
and identify possible faults in operation, both known and
unknown [6], [9]. For instance, parameter estimation iden-
tifies system parameters in the absence of faults. During
system operation, the parameters are recalculated and a
fault is identified if the value of the parameters changes.
This method has been proposed in [10] for fault diagnosis
of a 3-DOF industrial robotic manipulator. Observer-based
methods, on the other hand, use system models to predict
system behavior and compares it with the actual behavior
of the system. A fault is identified when the two signals
do not match. Such a method has been used for robotic
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manipulators. For instance, [11], [12] present the use
of a nonlinear observer for fault detection in a robotic
manipulator with unmodelled dynamics and discretization
errors.

Model-based fault detection methods are primarily lim-
ited by the accuracy of the model. As the complexity
of the system and the nonlinear behavior dominates the
dynamics of a manipulator it becomes difficult to capture
the true dynamics of the device. Even if a highly accurate
device model exists it may be impractical to implement it
due to its high computational cost. As such, model-based
methods are best suited for moderately complex but well-
understood systems. In complex systems, a different class
of methods must be used such as the data-driven methods.

Data-driven approaches identify faults without reliance
on a device model. Instead, they use sensors and device
state data directly to identify known and unknown faults.
One way of achieving this goal is by using neural net-
works. For instance, [13], [14] proposes the use of a Sig-
moid Neural Network along with the device model to not
only identify faults but also adjust the device model once
the faults appear. Another approach has been presented in
[15] where Self Organising Map Neural Network is used
with a Radial Basis Neural Network to detect faults in
robotic manipulators and predict its servicing requirement.
A comprehensive analysis of neural network use in the
field of robotic is presented in [16].

With an overwhelming amount of data available in a
robotic system, it is crucial to minimize computation time
and promote efficiency by prioritizing only data relevant
to fault detection. As a result, dimensionality reduction
methods are commonly used when training a classifier
[17]. The reduced model is not only quicker, and more
accurate, but also easier to interpret. The method proposed
in [18] allows a designer to interpret the model features
and their functions. On the other hand, a method proposed
by [19] improves the robustness of the dimensionality
reduction methods in systems with many dimensions and
ample noise.

One method that has not been used, thus far, for fault
identification is the stepwise model building method pro-
posed in [20]. It is a good candidate for fault identification
as it is simple to implement and accurate. However it can
struggle, in some cases, to select between two features
with equal chances of improving the model.

This paper presents a novel data-driven method for iden-
tifying failure modes in a robotic manipulator. The method
is based on the forward stepwise model building method
presented in [20] and it incorporates a novel advancement
[21] scoring criteria that improve the model building by
helping to choose between features that could improve
the model. The proposed method refinement improves the
accuracy of the model with the potential to use a fewer
number of features than all of the available predictive
variables. As a result, the features extracted by this method

could still represent physical measurements making it
easier to understand and adapt to many applications.

To the best of our knowledge, the forward stepwise
model building method and its derivation have not been
used for robot failure detection and identification, thus far.
Therefore, this paper presents a first-of-its-kind implemen-
tation and evaluation, and a comparison of the forward
stepwise model and the proposed modification.

To this end, Section II presents the modified forward
stepwise model building method and its working prin-
ciples. The method is then validated, in Section III by
comparing its prediction capabilities with a model that
uses all available features, in detecting failures in robotic
manipulators using three data sets. Section IV then dis-
cusses the results, highlighting the performance difference
between the two methods. Finally, Section V concludes
the applicability and feasibility of using the novel method
in various applications.

II. CLASSIFIER MODEL

A. Building the Classification Model

The classifier model is constructed using a method
similar to the forward stepwise analysis method [20]. One
begins with a null model; a model that contains no fea-
tures. One at a time, each possible feature available in the
training data set is added to the model, and the predictive
accuracy of the model is tested with the validation data set.
In the basic forward stepwise analysis method, the feature
with the largest improvement to the predictive accuracy is
permanently added to the model. The process then repeats,
where additional features are added until some type of
stopping criteria is achieved.

One possibility that can arise in this method is that mul-
tiple features may yield the same amount of improvement
to the model, see Figure 5. One must then introduce a
decision criteria to choose between which of the candidate
features to add to the model. Here, a decision criteria
originally introduced in [21] could be used. This selection
method utilises the available metrics in the training data to
determine which features are more likely to share similar
values across the classes.

For a given feature x, the amount of which two classes
c1 and c2 having similar values can be quantified with
the overlapping index η see Figure 1. The overlapping
index is evaluated by computing the area underneath the
intersection of the probability density functions for these
classes [22], in essence,

η(x|c1, x|c2) =
∫ ∞
−∞

min
(
f(x|c1) , f(x|c2)

)
dx. (1)

Since both f(x|c1) and f(x|c2) represent probability
density curves, the value of the overlapping index is η ∈
R[0, 1]. An overlapping index of 0 would indicate that the
feature has no commonality between the two classes. In
contrast, a value of 1 would indicate that the two classes
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have exactly identical values for the feature. In the context
of classification, it is desirable to have a low value for
the overlapping index between two features such that each
feature is unique. However, a low value for the overlapping
index is an insufficient marker on its own for extracting
unique features where η could be a small value caused by
a large range in one of the classes.

Adding the coefficient of variation v as a metric in-
troduces a penalty for data that have high variance. This
can be calculated using the mean value µ and standard
deviation σ for ith feature in the jth class such that,

v(xi|cj) =
∣∣∣∣σµ
∣∣∣∣. (2)

A smaller value of v is desirable, as it would indicate
that the data is more closely gathered about the mean,
and would suggest that future measurements would also
be near the mean value.

With the overlapping index and coefficient of variation
metrics defined, the scoring metric proposed in [21] can be
used to quantify the similarity the values for a ith feature
of two arbitrary classes would be,

SC(xi|c1, xi|c2) = η(xi|c1, xi|c2)v(xi|c1)v(xi|c2) (3)

B. Classifier Method Selection

There are many valid classifiers that exist in the lit-
erature. In this paper, a discriminant analysis classifier
is used. This type of classifier is easy to evaluate, and
is applicable to multi-class problems. At its core, this
classifier establishes boundary curves that separate the
classes, and determines the label for a new test sample
by determining on what side of the boundary the new test
sample lies. These boundary curves can be constructed
simply by knowing the mean and covariance of the training
data points for each class. Since it is not a guarantee that
the covariance for each class will be equal, linear boundary
curves can not be used. In this circumstance, quadratic
boundary curves can be used instead.

III. METHOD VALIDATION

A. Robot Failure Mode Database

The database provided by Luis Seabra Lopes and Luis
M. Camarinha-Matos [23] provides 6-DOF measurements
from 15 sensors on a robot, totalling 90 features and an
associated robot status label for a robotic manipulator
during its programmed tasks. Using this data set, one
could conceivably develop a classification model using
these features to predict the robot’s status given a new
set of measurements. However, using all of the available
measurements may not be desirable. A better classification
model could be developed with fewer features: using only
features that best separate the classes.

This paper utilises the LP1, LP4 and LP5 data sets from
this repository; LP2 and LP3 were excluded from this

(a)

(b)

Fig. 1: (a) The probability density functions for two classes
from the training data of the LP5 data set, featuring a large
amount of overlap. This indicates that these classes will
likely share similar values for the feature. (b) From the
same training data set, two classes with relatively smaller
overlap. This indicates, at this feature, the classes are less
likely to share similar values.

study as there were an insufficient number of instances
for all classes to properly train the classifier. The LP1
data set contains four unique classes that denote the state
of the robot. Similarly, LP4 contains three classes, and
LP5 contains five classes.

B. Applying the Method

The forward stepwise analysis method with the selection
criteria described above was used to construct a model for
a quadratic discriminant analysis classifier. The stopping
criteria used in this study are: 1) the addition of an
additional feature would make the predictive accuracy of
the model worse, 2) the number of features in the model
being built exceeds the arbitrarily selected maximum of
eight features.

C. Experimental Results

The three data sets investigated were each analysed nine
times. For every run, the data was randomly partitioned
into test and training data with a 70-30% split respectively.
The training data was further partitioned with a validation
test set, also with a 70-30% hold out.
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Fig. 2: A graph where the vertical axis depicts the differ-
ence in model accuracy using all features and the accuracy
from the extracted features. The general trend seen across
9 runs with each data set suggests an improvement to
the classifier accuracy when using the extracted features.
The LP4 data set in particular was highly receptive to
the method, where the model was consistently improved
by a significant margin. The LP1 and LP5 data sets had
experienced a few instances where the classifier accuracy
was worse when only using the extracted features.

Each run would utilise the method described in this
paper to build the classifier model with the extracted
features. Shown in Figure 2 is the difference in model
accuracy when using all of the features in the data set
and only the extracted features. The average accuracy with
built models for the LP1, LP4 and LP5 data sets were 79%,
81%, and 59% respectively. For comparison, the average
accuracy of the models that used all features for the LP1,
LP4 and LP5 data sets were 71%, 53%, and 56%.

The method was able to reduce the number of features
in the classifier in all of the simulation runs due to the
applied stopping criteria.

Shown in Figure 3 is the result of one of runs with
the LP1 data set. The confusion matrices highlight an
improvement in classifier accuracy when using the model
with extracted features. Similar performance was seen in
other runs, where the number of misclassifications was
reduced when using the model with extracted features.

IV. DISCUSSION

The proposed method used in this paper appear to
be useful at reducing the feature space of the robot
failure mode data sets. In Figure 2, the general trend
seen is an increase in classifier accuracy when only using
the extracted features in the classification model. The
effectiveness of the method seemed to favour certain
classification problems, such as the LP4 data set, where
the classification accuracy improved by as much as 42%.
However, in the LP5 data set there were mixed results in
the improvement of the classifier; in one run for example,
the accuracy decreased by 18% when using the extracted
features.

The methods described here are very sensitive to the
spread of the data, and will struggle with classes that have
features that are subsets of another class, see Figure 1(a).
One could attempt to overcome this limitation by applying
a relevant kernel function to the data [24].
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Fig. 3: The confusion matrices of the predicted and actual
classes with the test data set for one of the runs with the
LP1 data set. (a) Using all 90 features in the classification
model to achieve an accuracy of 69%. (b) Using the three
extracted features in the classification model to achieve an
accuracy of 88%.

Fig. 4: Shown in the scatter plot are the features FX2,
FX6, FZ3 from the training partition of the LP1 data set.
These features were extracted using the method and were
able to correctly classify the validation partition with 100%
accuracy. When using these features for the test data, the
accuracy was found to be 80% compared to the 65% when
using all features.
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Fig. 5: The proposed method visualised using the LP1 data set. In the first step of the process each feature is
independently added to the base/null model, and the accuracy tested with the validation partition. As seen in this
example, two features had the best and equal increase in improvement to the model. To determine which of the two
features should be used a closer look at the classification results is needed. For each feature the mislabelled pairs are
identified. The pairing with the largest number of incorrect classifications is then further scrutinised by calculating
the score from the overlapping index for that pair, and the coefficient of variation for the respective classes. For the
candidate features the scores are then compared, and the feature with the lower score is selected to be used in the next
iteration of building the model.

In a few instances, the results in Figure 2 depict scenar-
ios where there was little to no change in the classifier
accuracy when using the extracted features. While this
may seem like a failure of using the method, it is im-
portant to remember that the feature space has still been
reduced, as the maximum number of features in the model
construction was capped. Therefore, one can use fewer
features to achieve the same classification accuracy. In
applications where there may be a cumulative delay in
robot processing due to sensor reading frequencies, some
unnecessary sensor readings could be eliminated by using
the methods proposed here. Alternatively, if one were to
consider using the proposed algorithm with a classifier
other than discriminant analysis, the so-called curse of
dimensionality can become a significant consideration,
where increasing the number of features in the classifier
model can harshly impact the computational efficiency.

An inherent limitation of the forward stepwise analysis
based methods are that they may not find the best possible
model. The method only considers the next available
feature that will improve its accuracy, which can lead to
approaching only a local best solution. There may exist
a better global solution that the method had not consid-
ered due to a combination of features that could yield
better model accuracy. This is an advantage of methods
like Random Forest [25], [26], which can explore more
combinations of features to build the a better performing
model.

Lastly, the run-to-run discrepancies in the model im-
provement results indicates a dependence on the variation
of values of the training data. In data sets with a smaller

number of observations, an outlier sample will have a
larger impact on the data metrics, which are crucial to
both the discriminant analysis classifier and the feature
scoring criteria. It is thus recommended to carefully re-
move significant outliers in the data sets prior to applying
the method and to collect a sufficient number of samples
to effectively train the model.

V. CONCLUSIONS

This paper applied a modified forward stepwise model
building method to a robot failure mode classification
problem. The proposed modification shown in this work is
to use scoring criteria when faced with multiple features
that could improve the model during an iteration. The
supervised model building method was used with three
data sets that contained force and torque measurements of
a robot during normal operation and in a failure mode.
The outcome of the experiment was positive, where most
models developed were able to both use a small number
of required features and improve the model accuracy,
when compared with using all available measurements.
However, some of the results did show worse performance
when using the model built from the method. In the future
development of the proposed model builder it is needed
to investigate these failures and how the method can be
improved. Only QDA was used in this paper, and the data
sets may be more receptive to other classifiers, such as
k-nearest neighbours or support vector machines.

While using the proposed method was successful in re-
ducing the number of features in the model while improv-
ing accuracy, the scope of this paper did not investigate
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other feature reduction techniques such as Boruta [27].
Comparing the efficiency and model improvement using
these different feature reduction methods on the same data
is recommended.

The applicability to other real-world systems in oper-
ation is to be seen. It is crucial that the data sets be
adequately labelled for these methods to function. For
instance, a mobile robot may be in a failure state for a
variety of reasons, it is up to the supervising creator of the
database to determine an appropriate label for this failure
state. Oversimplifying the labels into broad groupings may
result in poor clarity of robot status, or difficulty in finding
relevant features that are applicable to all states lumped
in the group. On the other hand, being overly specific
and increasing the number of labelled failure modes may
generate inaccurate classifications due to a large amount
of overlap in shared values. Furthermore, an increase
in the number of classes should have a corresponding
change to the number of samples in the database. For
some robotic systems it may be difficult to accumulate
repeatable measurements for the desired failure modes. It
may be needed to then generate samples from simulation
of the robot, provided that an accurate simulation model
of the system exists [28].

The results of this paper appear promising as a simple
way to improve the ability of a robot in determining
if it has encountered an execution failure. With further
refinement, robot autonomy can be robustly improved by
identifying faults. These improvements to robot intelli-
gence and make applications from mobile humanoid robots
to surgery assisting robot manipulators one step closer to
being realised.

REFERENCES

[1] K. Bimbraw, “Autonomous cars: Past, present and future a review
of the developments in the last century, the present scenario and the
expected future of autonomous vehicle technology,” in 2015 12th
international conference on informatics in control, automation and
robotics (ICINCO), vol. 1. IEEE, 2015, pp. 191–198.

[2] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M.
Konstantinidis, “Evolution of autonomous and semi-autonomous
robotic surgical systems: a review of the literature,” The interna-
tional journal of medical robotics and computer assisted surgery,
vol. 7, no. 4, pp. 375–392, 2011.

[3] G. Steinbauer, “A survey about faults of robots used in robocup,”
in Robot Soccer World Cup. Springer, 2012, pp. 344–355.

[4] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection
and diagnosis in industrial systems. Springer Science & Business
Media, 2000.

[5] E. Khalastchi and M. Kalech, “A sensor-based approach for fault
detection and diagnosis for robotic systems,” Autonomous Robots,
vol. 42, no. 6, pp. 1231–1248, 2018.

[6] O. Pettersson, “Execution monitoring in robotics: A survey,”
Robotics and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005.

[7] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “Expert system
framework for fault detection and fault tolerance in robotics,”
Computers & electrical engineering, vol. 20, no. 5, pp. 421–435,
1994.

[8] B. Yan, T. Zhang, and C. Xie, “Fuzzy expert system for
fault diagnosis of robotic assembly,” in Proceedings of the 4th
World Congress on Intelligent Control and Automation (Cat. No.
02EX527), vol. 1. IEEE, 2002, pp. 445–449.

[9] R. Davis and W. Hamscher, “Model-based reasoning: Troubleshoot-
ing,” in Exploring artificial intelligence. Elsevier, 1988, pp. 297–
346.

[10] R. Isermann, “Estimation of physical parameters for dynamic
processes with application to fault detection of an industrial robot,”
in Safety Evaluation Based on Identification Approaches Related
to Time-Variant and Nonlinear Structures. Springer, 1993, pp.
166–187.

[11] F. Caccavale and I. D. Walker, “Observer-based fault detection for
robot manipulators,” in Proceedings of International Conference on
Robotics and Automation, vol. 4. IEEE, 1997, pp. 2881–2887.

[12] F. Caccavale, “Experiments of observer-based fault detection for an
industrial robot,” in Proceedings of the 1998 IEEE International
Conference on Control Applications (Cat. No. 98CH36104), vol. 1.
IEEE, 1998, pp. 480–484.

[13] A. T. Vemuri and M. M. Polycarpou, “Neural-network-based robust
fault diagnosis in robotic systems,” IEEE Transactions on neural
networks, vol. 8, no. 6, pp. 1410–1420, 1997.

[14] A. T. Vemuri, M. M. Polycarpou, and S. A. Diakourtis, “Neural
network based fault detection in robotic manipulators,” IEEE Trans-
actions on Robotics and Automation, vol. 14, no. 2, pp. 342–348,
1998.

[15] I. Eski, S. Erkaya, S. Savas, and S. Yildirim, “Fault detection on
robot manipulators using artificial neural networks,” Robotics and
Computer-Integrated Manufacturing, vol. 27, no. 1, pp. 115–123,
2011.

[16] L. Jin, S. Li, J. Yu, and J. He, “Robot manipulator control using
neural networks: A survey,” Neurocomputing, vol. 285, pp. 23–34,
2018.

[17] S. Verron, T. Tiplica, and A. Kobi, “Fault detection and identifi-
cation with a new feature selection based on mutual information,”
Journal of Process Control, vol. 18, no. 5, pp. 479–490, 2008.

[18] A. Alvanpour, S. K. Das, C. K. Robinson, O. Nasraoui, and
D. Popa, “Robot failure mode prediction with explainable machine
learning,” in 2020 IEEE 16th International Conference on Automa-
tion Science and Engineering (CASE). IEEE, 2020, pp. 61–66.

[19] T. Guo, D. Zhou, J. Zhang, M. Chen, and X. Tai, “Fault detection
based on robust characteristic dimensionality reduction,” Control
Engineering Practice, vol. 84, pp. 125–138, 2019.

[20] M. A. Efroymson, “Multiple regression analysis,” A. Ralston and H.
S. Wilf, Eds., Mathematical Methods for Digital Computers, 1960.

[21] B. Kent and C. Rossa, “Electric impedance spectroscopy feature
extraction for tissue classification with electrode embedded
surgical needles through a modified forward stepwise method,”
Computers in Biology and Medicine, 2021. [Online]. Available:
https://doi.org/10.1016/j.compbiomed.2021.104522

[22] M. Pastore and A. Calcagnì, “Measuring distribution similarities
between samples: A distribution-free overlapping index,” Frontiers
in psychology, vol. 10, p. 1089, 2019.

[23] L. S. Lopes and L. M. Camarinha-Matos, “UCI machine learning
repository: Robot execution failures data set,” 1999. [Online]. Avail-
able: http://archive.ics.uci.edu/ml/datasets/Robot%20Execution%20
Failures

[24] J. Arenas-Garcia, K. B. Petersen, G. Camps-Valls, and L. K.
Hansen, “Kernel multivariate analysis framework for supervised
subspace learning: A tutorial on linear and kernel multivariate
methods,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp.
16–29, 2013.

[25] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science
& Business Media, 2009.

[26] N. L. Afanador, A. Smolinska, T. N. Tran, and L. Blanchet,
“Unsupervised random forest: a tutorial with case studies,” journal
of Chemometrics, vol. 30, no. 5, pp. 232–241, 2016.

[27] K. M and R. W, “Feature selection with the boruta package,”
Journal of Statistical Software, vol. 36, no. 11, 2010.

[28] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using sim-
ulation and domain adaptation to improve efficiency of deep robotic
grasping,” in 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2018, pp. 4243–4250.

441

Authorized licensed use limited to: Carleton University. Downloaded on March 29,2022 at 13:36:46 UTC from IEEE Xplore.  Restrictions apply. 


