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ABSTRACT Percutaneous nephrolithotomy (PCNL) is a minimally invasive procedure to remove large
renal calculi through a small incision in the patient’s back. Ultrasound (US) imaging is commonly used to
guide the needle to the kidney during this procedure. However, it requires an advanced level of dexterity
to coordinate the US probe and the needle to keep the needle visible in the images at all times. Failure to
maintain needle-probe alignment can result in inadvertent injury, bleeding, and other complications. The use
of robotic assistance can alleviate the surgeon’s cognitive workload by enabling autonomous positioning of
the US probe and accurate needle tracking.
This paper presents a new US-guided visual servoing (VS) algorithm for needle tracking using longitudinal
US images of a needle subjected to out-of-plane motion. The ultrasound probe can move in 4 degrees-of-
freedom (DOF), that is, two translations and one rotation in the imaging plane, and one rotation out of the
imaging plane. Unlike previously reported VS algorithms, 4-DOF tracking is achieved using only 2D-US
images and without any additional position sensor or prior knowledge of the needle trajectory. The algorithm
is validated extensively in three different experimental scenarios using a water tank, a tissue phantom, and
ex-vivo porcine tissue. Results obtained from several trials confirm the algorithm’s ability to track the needle
andmaintain needle-probe alignment with an average error of 1.5mm, despite an out-of-plane average needle
deflection of 7 mm along a 60 mm insertion depth.

INDEX TERMS Medical robotics, needle tracking, percutaneous nephrolithotomy, robot-assisted surgery,
tool tracking, ultrasound imaging, visual servoing.

I. INTRODUCTION

PERCUTANEOUS nephrolithotomy (PCNL) is the pri-
mary surgical treatment to remove large upper urinary

tract stones. In PCNL, the surgeon makes a small incision in
the patient’s back and inserts a small calibre tube to access
the kidney. An endoscope is then passed down the tube into
the kidney to fragment and remove the stones. Despite nearly
half a century of continuous improvement, PCNL still has a
steep learning curve and a high risk of complications such
as bleeding, renal pelvis perforation, and colon and spleen
injuries [1].

Kidney access during PCNLmay be performed under fluo-

roscopy imaging, ultrasound (US) imaging, or a combination
of both [2]. Fluoroscopy has been the main imaging modality
used in Canada and in the United States; however, it ex-
poses patients and interventionists to high levels of radiation
[3], [4]. Moreover, other limitations of fluoroscopy include
single-plane imaging, and the inability to image organs ad-
jacent to the kidney during puncture, posing a risk of acci-
dental injury [5]. In contrast, US-guided PCNL (usPCNL) is
radiation-free and gives a clearer delineation of the kidney’s
adjacent structures, which can prevent inadvertent puncture
[6], [7].

UsPCNL requires an advanced skill level to identify the
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needle in the US images while steering it toward a target in
the kidney. While inserting the needle with one hand, with
the other hand the surgeon must orient the US probe either
perpendicularly or parallel to the needle shaft in order to
see it [8]. When the needle shaft crosses the imaging plane
at a near-oblique angle, a cross-section of the needle shaft
appears as a hyperechoic white dot in the image. This is called
transverse imaging. To locate the needle tip, the surgeon
slides the probe back and forth along the needle shaft. In
the second case, where the imaging plane is parallel to the
needle shaft, called longitudinal imaging, the needle appears
as a line in the image. Although the needle tip is visible,
manoeuvring the US probe to keep the same portion of the
shaft visible in the image is not trivial [9]. Furthermore, when
using bevelled-tip needles, the needle tip follows a curved
trajectory during insertion, posing an additional challenge to
keep the needle in the imaging plane [10], [11]. As a result,
misinterpretation caused by image-needle misalignment is
common, often leading to inaccurate needle placement and
a steep learning curve [8], [12].

To assist surgeons in performing percutaneous image-
guided needle puncturing and steering, a wide range of meth-
ods have been suggested, including a guide attached to the
US probe to keep the needle aligned with the US plane [13],
[14] at the cost of limited dexterity. Augmented reality has
also been proposed [15]–[19]. More recently, robotic-assisted
methods have been considered for other percutaneous pro-
cedures, such as prostate brachytherapy, thermal ablation of
liver tumours, and kidney ablation [20]–[26]. In most of these
methods, a robot arm steers the needle autonomously, while
the position of the needle tip is measured through sensors
embedded in the shaft, such as optical fibre or electromag-
netic sensors [27]–[29].WhenUS images are used to track the
needle, the imaging plane must move along with the needle
to keep it visible at all times. For example, optical flow is
used in [30] to segment a cannula from 2-dimensional (2D)
US images and translate the probe to keep the needle centred
in the image. In [31]–[33], the US probe is controlled to move
along the pre-defined path the needle is expected to take.

Most of the methods described above rely on a pre-defined
needle trajectory. However, in usPCNL the trajectory is not
known as the needle is steered manually. To control the robot
arm holding the US probe using only real-time US images,
visual servoing (VS) may be used. In VS, visual features
are defined to quantify the content of an image. The speed
of the imaging sensor is then controlled to minimize the
error between the real-time and the desired image features.
The relation between the time derivatives of features and
the speed of the imaging device is given by an interaction
matrix, which contains the partial derivatives of the image
features with respect to the speed of each degree-of-freedom
(DOF) of the imaging sensor. A key consideration in VS
is the choice of visual features. Image moments have been
introduced as useful features for camera-based VS in [34],
[35], and Green’s theorem was used to find an analytical
solution to the interaction matrix. Mebarki et al. followed

with the first application of VS with image-moments derived
from 2D US images in [36], and further in [37], where an
analytical derivation of the interaction matrix with online
parameter estimation was proposed to control the 6-DOFs of
a US probe to image a cross-section of a motionless object
with good convergence of the visual feature error. Further to
that, [38] presented a new set of image features taken from
three orthogonal US images, which provides global controller
convergence even when considering symmetric objects. VS
has also been used to position a needle in the US image
plane during percutaneous cholecystectomy in [39], to adjust
the in-plane rotation for image quality optimization in [40],
and to scan peripheral arteries in [41]. In these examples,
the US probe is manoeuvred to keep track of a static target.
In usPCNL, the needle moves relative to the probe in an
unpredictable manner.
In our previouswork, we showed that imagemoment-based

VS can effectively track a needle translating and rotating on
a 2D plane [42]. This 2D tracking algorithm has a major
practical limitation: If a bevelled needle is used, the needle
tip follows a curved trajectory during insertion. Eventually,
through this gradual out-of-plane motion, the needle shaft
exits the imaging plane [43] until the algorithm is no longer
able to track the needle. Attempts to mitigate this problem
often model needle-tissue interaction to estimate needle de-
flection [11], [44]–[47]. Alternatively, volumetric US images
provide more detailed information about the position of the
needle and surrounding structures [38], [48]–[51]. However,
3D/4D US is not widely used in PCNL, and image processing
is computationally expensive, resulting in lower frame rates
than 2D imaging, which is not suitable for real-time con-
trol [52], [53]. Other methods use electromagnetic tracking,
magnetic sensors, optical tracking systems, or other types of
sensors attached to the needle to track the needle at the cost
of additional equipment and added complexity [54]–[61].
In this paper, we extend the general concept of US-based

VS from [37] and propose a new set of moment-based image
features specifically devised for needle tracking with out-of-
plane motion caused by needle deflection, using only 2D-
US images. While image moments and VS have previously
been used for US-guided tool tracking, to the best of the
author’s knowledge, this is the first time that image moments
derived from single-plane 2D US images are used with VS
for tracking a needle subjected to out-of-plane deflection.
Here, needle motion is considered in 4-DOFs, that is, two
translations and one rotation of the needle in the US imaging
plane, and one rotation out of the imaging plane. In contrast
to the algorithms described earlier, needle tracking is done in
4-DOF without any prior knowledge of the needle trajectory
and solely based on 2D US images. The main contributions
of this work are:
1) This is the first VS method with image moments de-

rived specifically for tracking both in-plane and out-of-
plane motion of a moving needle using longitudinal US
images; and

2) The algorithm only requires a standard 2D US probe
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and does not rely on any prior knowledge of the needle
trajectory.

Running at 20 Hz, the method is computationally efficient
and well-suited for real-time needle tracking. In the proposed
approach, the US probe is attached to a robotic manipulator to
follow themotion of amanually steered needle in the tissue. A
desired longitudinal pose of the needle in the US image is first
defined, followed by a set of image features calculated from
the desired and real-time images, from which the interaction
matrix is calculated for the image. As the needle is advanced
in the tissue, the algorithm determines the required linear
and angular velocities of the US probe that minimize the
difference between the desired and real-time image features,
ensuring that the needle shaft is always aligned with the US
imaging plane.

The paper is organized as follows: Section 2 introduces the
proposedVS algorithm, the image features, and the robot con-
trol law. The experimental procedure is presented in Section
3. In the experimental setup, the US probe is connected to a
force sensor-equipped robot arm, and a second robot is used to
move the needle with measurable and repeatable movements.
Three experimental scenarios are considered. First, the needle
and probe are submerged in a water container so that both the
needle and probe can be moved freely. Then, a phantommade
of 5% agar is employed to validate the algorithm’s ability of
tracking the needle as it deflects in the tissue. Finally, the
algorithm’s functionality is tested in ex-vivo porcine tissue
for more realistic results. The feasibility of the proposed
method is demonstrated through several trials in Section 4.
Finally, in Section 5, a discussion of the obtained results and
recommendations for future work are presented.

II. 4-DOF VISUAL SERVOING DESIGN
The first step in the algorithm is to define a desired lon-
gitudinal US image of the needle and a set of predefined
time-variant and differentiable visual features that quantify
the content of the image. The robot is then controlled so that
the visual features extracted from the real-time US image
converge to their corresponding values in the desired US
image [34].

Fig. 1(a) shows a sample of a longitudinal US image of a
needle placed in a water tank, where the plane containing the
needle shaft is aligned with the US imaging plane, making
the needle appear as a bright line in the image. The features
describing the characteristics of the image are the visible
length ℓ of the needle, the position of the needle tip in the
image (xtip, ytip), and the in-plane orientation θ of the needle
shaft measured with respect to the image horizontal axis x.
When a bevelled tip needle is employed, the tip follows a
curved trajectory. As a result, when the needle moves away
from a straight-line trajectory, the longitudinal plane contain-
ing the needle shaft slowly rotates with respect to the US
imaging plane. This out-of-plane motion lowers the intensity
of the pixels along the needle shaft, particularly around the
tip, and gradually decreases the needle’s visible length ℓ,
see Fig. 1(b). The decrease in image intensity can be clearly
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FIGURE 1. Longitudinal US image of a needle in a water tank. In (a), the
plane containing the needle shaft is aligned with the US imaging plane
(x, y ). In (b), these planes are rotated 8◦ about y . We can distinguish 4
independent features in the image: 1) the needle’s shaft length ℓ, 2) the
position of the needle tip (xtip, ytip), 3) the in-plane orientation of the
shaft θ, and 4) the out-of-plane misalignment ϕ between the needle and
the imaging planes about y . The out-of-plane misalignment decreases the
image intensity from (a) to (b) and the length ℓ. In (c) the needle is
modelled as a semi-ellipsoid in the given coordinate frames. In (d), the
needle’s cross-section is shown as S.

seen by comparing each US image and histograms presented
under them in Fig. 1(a) and (b). Thus, concurrent variations in
both image intensity and needle length indicate out-of-plane
rotation, which is quantified by the variable ϕ as defined in
Fig. 1(b).
Assuming a needle inserted in soft tissue, the following

simplifications can be made:
1) The visible portion of the needle in the US image is a

straight line;
2) The needle can only translate along the x and y axes,

and rotate about the y and z axes in the US coordinate
frame, as defined in Fig. 1(a);

3) The orientation of the needle tip bevel is known, thus
the direction of potential out-of-plane motion about the
y axis, that is sign(dϕ/dt), is also known.

Hereafter, we give vectors and matrices lower and upper
case variables, respectively, written in bold typeface. Since
our goal is to track the needle’s motion in 4-DOF (translations
along the x and y axes and rotations about the y and z axes),
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let v ∈ R4×1 be the velocity of the US probe defined as

v = [υ ω]T = [υx υy ωy ωz]
T (1)

where υ = [υx υy]
T has the translational velocity of the

probe along x and y, that is vx and vy respectively, and
ω = [ωy ωz]

T represents the rotational components of probe
velocity about the y and z axes, that is ωy and ωz, respectively.
The US probe position is measured in sF , as specified in
Fig. 1(b). The needle pose is given by the four independent
features xtip, ytip, θ, and ϕ, which are used to track the in-
plane and out-of-plane motion of the needle. The vector of
image features can be defined as:

s = [xtip ytip θ ϕ]T (2)

These features are decoupled since xtip, ytip, and θ are indica-
tors of in-plane motion, whereas ϕ indicates the out-of-plane
motion. The variation of image features with respect to probe
velocities can then be written as:

ṡi =
∂si
∂vx

vx +
∂si
∂vy

vy +
∂si
∂ωy

ωy +
∂si
∂ωz

ωz, (3)

where the dot operator represents the first temporal derivative,
and the subscript i indicates the ith element of vector s. We
now relate the visual features’ time variation ṡ to the probe’s
velocity through the so called interaction matrix Ls:

ṡ = Lsv (4)

where the ith row of the interaction matrix has all the partial
derivatives of the ith feature with respect to the probe veloci-
ties, that is:

Lsi =
[
∂si
∂vx

∂si
∂vy

∂si
∂ωy

∂si
∂ωz

]
. (5)

Since the velocity vector has 4 elements and a vector of 4
features is considered, Ls ∈ R4×4. Further, since all 4 image
features are decoupled from one another, as stated earlier, Ls

will be full-rank and the velocity of the US probe can be
calculated through (4). Stable VS control based on 2D US
images then requires the following 3 additional conditions to
be met [37]:

4) A distinguishable cross-section of the needle is visible
in the US image;

5) All points in the needle’s surface can be captured by a
function fn(x, y, z) = 0;

6) ∇fn(x, y, z) exists.
Considering that tracking starts when a cross-section of

the needle becomes visible in the US image, a functional
tracking system will ensure that the first condition is fulfilled.
To satisfy the second and third conditions, the needle can be
modelled as a prolate spheroid, as depicted in Figs. 1(c) and
(d). The general ellipsoid, also known as the triaxial ellipsoid,
can be defined in Cartesian coordinates as:

x2

a2
+
y2

b2
+
z2

c2
= 1, (6)

where a, b, and c are the lengths of the principal semi-axes.
When a ̸= b = c, the ellipsoid is a spheroid, and in particular,

if a > b = c it becomes a prolate spheroid. Equation (6) can
be written in the form of fn(x, y, z) = 0 as:

fn(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1. (7)

The next step is to calculate the visual features from each
US image. Such image features can be defined in terms
of image moments of different orders, which are statistical
descriptors of objects in the image plane [35]. The rest of this
section details how the image features and their derivatives
are defined using image moments. Finally, the interaction
matrix derived from these features is employed to design the
VS controller.

A. DEFINITION OF IMAGE MOMENTS
Image moments of order i+ j may be defined as:

mij =

∫∫
S(t)

f (x, y, t)dxdy; f (x, y, t) = x iyjI(x, y, t) (8)

where (x, y) are coordinates of a point in the image, I(x, y, t)
is the intensity value of each point at time t , and S(t) is the
area in the image containing the cross-section image of the
needle in the image, see Fig. 1(c). Now, image features in (2)
can be defined as functions of image moments as:

sk = gk(mi,j); k = 1, . . . , 4 and ∀i, j ≥ 0 (9)

where sk is the k th feature in vector s, whose time derivative
becomes:

ṡk =
∂gk
∂mij

ṁij; k = 1, . . . , 4 and ∀i, j ≥ 0 (10)

To calculate ṁij, we can apply Leibniz integral rule to (8),
which yields [34]:

ṁij =

∫∫
S(t)

(
∂f
∂t + div

[
f (x, y)[ẋ ẏ]T

])
dxdy (11)

where ẋ and ẏ are the image point velocities between consec-
utive images. Expanding (11) gives:

ṁij =

∫∫
S(t)

[
x iyjİ + ∂f

∂x ẋ +
∂f
∂y ẏ+ f (x, y)

(
∂ẋ
∂x +

∂ẏ
∂y

)]
dxdy

(12)
Here, İ , short for İ(x, y, t), is the variation in the intensity of
each pixel in consecutive images. The next step is to calculate
ẋ and ẏ based on the needle image model defined in the
previous subsection. The approach taken here is similar to
the one introduced in [37] with modifications for out-of-plane
motion compensation. However, the complete methodology
is provided for clarity and comprehensiveness. Refereeing
now to Fig. 1(d), for any point np = [nx ny nz]T in the
needle’s frame nF , the following affine transformation gives
the point’s coordinates in the US probe’s frame:

sp = sRn
np+ stn (13)

where sRn and stn = [tx ty tz]T are the rotation matrix and the
translation vector, relating two coordinate frames sF and nF ,

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3562078

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mazdarani et al.: US-based VS for longitudinal Needle Tracking in Robot-aided PCNL

and sp = [x y 0]T is the coordinate of a point in the US image
for z = 0 defined in the US coordinate frame sF . The rotation
matrix is:

sRn = Rz(−θ)Ry(−ϕ)

=

 cos θ cosϕ sin θ − cos θ sinϕ
− sin θ cosϕ cos θ sin θ sinϕ

sinϕ 0 cosϕ

 (14)

where θ is the azimuthal angle between the needle shaft and
the x-axis in the x − y plane, and ϕ is the elevation angle
between the needle shaft and the x − y plane, both defined in
the US probe coordinate frame. Assuming that the needle’s
coordinate frame is located along the US probe’s y-axis, the
translation vector has only one non-zero element, that is:

stn =
[
0 ty 0

]T
(15)

To calculate ẋ and ẏ the time derivative of (13) is taken:

sṗ = sṘn
np+ sRn

nṗ+ sṫn (16)

in which: {
sṘn = −[ω]×

sRn
sṫn = −[ω]×

stn − v
(17)

Here, [ω]× represents the cross product matrix (or the skew-
symmetric matrix) associated with vector ω. It follows that:

sṗ = −[ω]×
sRn

np− v− [ω]×
stn +

sRn
nṗ, (18)

and from (13), the above simplifies to:

sṗ = −v− [ω]×
sp+ sRn

nṗ (19)

For skew-symmetric matrices, [a]×b = −[b]×a, thus (19) can
be rewritten as:

sṗ = −v+ [sp]×ω + sRn
nṗ. (20)

Here, it is desirable to express sṗ = [ẋ ẏ 0] only in terms
of sp, v and ω. To eliminate nṗ, the method provided in [37]
can be employed herein.

Unless the needle has pure in-plane motion, a different
cross-section of the needle is visible in the US image at each
sampling time. The velocity of a contour point np(k) ∈ C(k)
in image k can be approximated as np(k) − np(k − 1). For
in-plane motion, since the contour C remains the same for
different samples, nṗ ≈ 0. Therefore, nṗ ̸= 0 indicates the
out-of-plane motion occurred between two image samples.
Any point np ∈ C results from the intersection of the US
plane with the needle surface fn. Therefore, vector nṗ lies on
the plane tangent to the needle surface at np. The following
relationship can be used:

(n∇fn)T nṗ = 0 (21)

where n∇fn is the gradient of fn in the needle frame. The
projection of zs-axis on the plane tangent to the needle surface
at np is the closest direction for nṗ. Therefore, the second
relationship for nṗ can be established as:

(nzs × n∇fn)T nṗ = 0 (22)

By solving for (20)-(22), the image point velocity can be
written as: {

ẋ = −vx + xk1ωy + yωz
ẏ = −vy + xk2ωy − xωz

(23)

in which k1 and k2 are:

k1 = fx fz
f 2x +f 2y

, k2 =
fyfz

f 2x +f 2y
(24)

and s∇fn = [fx fy fz]
T is the gradient of fn(x, y, z) in the US

probe’s frame, i.e., s∇fn = sRn
n∇fn, which can be derived

by first calculating n∇fn based on (7) as:

n∇fn =
[

2
a2

nx 2
b2

ny 2
c2
nz

]T
= Anp, (25)

where A = diag
(

2
a2 ,

2
b2 ,

2
c2
)
and np = sRT

n (
sp − stn).

Therefore, the gradient vector in the US frame is:

s∇fn = sRn
n∇fn = sRnAsRT

n (
sp− stn). (26)

By substituting sRn from (14) in (26), assuming b = c, and
using the small angel approximations sin2 ϕ ≃ 0, and cosϕ ≃
1, s∇fn can be written as:

s∇fn =
2

a2b2

(a2s2θ + b2c2θ)x + (a2 − b2)sθcθy′

(a2 − b2)sθcθx + (a2c2θ + b2s2θ)y′

−(a2 − b2)cθsϕx + (a2 − b2)sθsϕy′


(27)

with sin → s, cos → c, and y′ = y − ty. The model
parameters from (6) needed in (27) are a and b, which are both
measurable from the desired US image, where a = ℓ∗ is the
length of needle shaft in the desired image, and b is the needle
diameter. While the needle diameter is usually known, it can
also be calculated form the image. However, by considering
that a ≫ b, the gradient vector can be approximated as
follows, which is more convenient for further calculations:

s∇fn ≈

 s2θx + sθcθy′

sθcθx + c2θy′

−cθsϕx + sθsϕy′

 (28)

Finally, by substituting (23) in (12), the time variation of
image features can be written in terms of probe velocities as:

ṁij =
[
mijvx mijvy mijωy mijωz

]
v (29)

where mijvx =
∂mij

∂vx
, mijvy =

∂mij

∂vy
, and so on.

B. VISUAL FEATURES CALCULATION
The visual features defined in Fig. 1(a) can now be written
in terms of moments of order of up to two. The needle shaft
orientation with respect to the horizontal imaging axis is:

θ =
1

2
arctan

(
2µ11

µ20 − µ02

)
, (30)

and the length of the needle shaft in the image is:

ℓ =

√
8

m00

(
µ20 + µ02 +

√
(µ20 − µ02)

2
+ 4µ2

11

)
, (31)
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and the position of the needle tip in the image is:

xtip = l cos θ

ytip =
m01

m00
+

1

2
l sin θ.

(32)

The needle diameter required in (27) can be also defined as:

b =

√
8

m00

(
µ20 + µ02 −

√
(µ20 − µ02)

2
+ 4µ2

11

)
, (33)

which is only computed once from the desired image. Here,
µij is known as the central moment and is defined by:

µij =

∫∫
S
(x − xg)

i
(y− yg)

j dxdy (34)

where xg = m10

m00
and yg = m01

m00
give the coordinates of the

centre of gravity. The relation between µij and mij is given in
[34] as:

µij =

i∑
k=0

j∑
l=0

(
i
k

)(
j
l

)
(−xg)i−k

(−yg)j−l mkl (35)

Therefore, the central moments can be calculated as:

µ11 = m11 − xgm01 = m11 − ygm10

µ20 = m20 − xgm10

µ02 = m02 − ygm01

(36)

As postulated at the beginning of this section, the image
intensity plays a key role in determining out-of-plane mo-
tion. Therefore, we can define an intensity-based feature as
follows:

α = m00 =

∫∫
S
I(x, y, t)dxdy. (37)

This zero-order moment gives the object’s area weighed by
its pixels’ intensity. While out-of-plane motion gradually
decreases both the image intensity and needle length in the
image, with in-plane motion these parameters will not change
considerably, and thus they can be used to estimate the out-
of-plane rotation of the needle.

By considering a spherical coordinate system for the ellip-
soid model given in Fig. 1(c), the elevation angle ϕ can be
defined as:

ϕ = arcsin

√
a2 − r2

a2 − b2
, (38)

where r is the distance of each point on the ellipsoid surface to
the origin. To calculate ϕ, we note that a≫ b and b ≤ r ≤ a.
Also, a is equal to the needle length in the desired imagewhile
r is equal to the needle length in the current image, that is,
a = ℓ∗ and r = ℓ. Further, (38) is only valid when both the
visible needle length ℓ and needle’s intensity (given by α) are
less than the values defined in the desired image. Therefore,
by considering these observations and using the small angel
approximation sinϕ ≈ ϕ in (38), the out-of-plane rotation
can be approximately calculated by:

ϕ = cH(l∗ − l)H(α∗ − α)

√
1−

(
l
l∗

)2

, (39)

where H(.) is the Heaviside step function, 0 < c < 1 is a
tunable weight, and ℓ∗ and α∗ are, respectively, the needle’s
length and intensity in the desired image. We also notice that
in the defined coordinate system ϕ is invariant to in-plane
motion.
Finally, by calculating the time variation of visual features

in s = [xtip ytip θ ϕ]T according to (10), the interaction
matrix Ls in (4) is known for every time step. The interaction
matrix can now be used in the controller design to calculate
the probe velocities.

C. ROBOT CONTROLLER DESIGN
A classic control law widely used in VS gives the velocity of
the camera (here the US probe) based on the error observed
between the desired features s∗ and the actual time-variant
image features s(t) calculated on the real-time US images.
Defining the error signal as e(t) = s∗ − s(t), the VS control
law that minimizes the features’ error is:

vc = KpL
†
s (s

∗ − s) (40)

where vc is the US probe’s velocity, Kp > 0 ∈ R4×4 is a
diagonal matrix of control gains, andL†

s is the pseudo-inverse
of Ls given by

L†
s = LT

s

(
LsL

T
s

)−1
(41)

With a correct estimation of Ls, the closed-loop system
is shown to be locally asymptotically stable [37]. Here, the
desired feature vector s∗ represents the desired cross-section
image of the needle, which in turn defines the desired pose of
the robot arm holding the US probe. The basic block diagram
of the proposed tracking method is shown in Fig. 2, and
control algorithm is briefly explained in Algorithm 1.
During imaging, the US probe must remain in contact with

the tissue surface, which may be enforced with a force con-
troller along the vertical axis. Thus, a force sensor is added to
the robot end-effector and a similar force controller as the one
implemented in [50] is applied. Such internal force control
loop will determine the position of the probe along the y-axis
in such a way to regulate the contact force to 2 N, and its angle
around the z-axis to deal with uneven surfaces. Therefore,
while the VS controller tries to track the needle with both in-
plane and out-of-plane motions, the internal force controller
keeps the probe in contact with the tissue.

III. EXPERIMENTAL VALIDATION
To validate the proposed method, the experimental setup
shown in Fig. 3 is used. A 40-mm US probe (L15-7H40-A5
from Telemed Ultrasound, Vilnius, Lituania) is attached to
the end-effector of a 6-DOF robot arm (Meca500 fromMeca-
demic, Montréal, Canada) through a force sensor (Medusa
FT sensor from Bota Systems, Zurich, Switzerland). Both
convex and linear US transducers can be used for usPCNL.
The former is preferred for deep organs and the latter for shal-
lower areas [13]. In this paper, we used a linear transducer,
however, the proposed algorithm can be implemented using
a convex probe as well. The US machine streams images
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FIGURE 2. Overview of the proposed algorithm. Image features extracted from a desired US image and the real-time US image are multiplied by a
time-variant interaction matrix to determine the required speed of the US probe that makes the current features tend to the desired features. The force
controller is used in Scenario 2 to ensure sufficient acoustic contact between the tissue and the US probe.
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FIGURE 3. Experimental setup. In (a), the needle and the US probe are
each connected to a robot arm and submerged in a water tank. As robot 2
moves the needle in a random sequence in a plane, robot 1 adjusts the
position and orientation of the US to minimize the error between the
desired and actual image features. In (b), the water tank is replaced with
an artificial phantom. In (c), ex-vivo porcine tissue is used in the
experiments.

Algorithm 1 US-based VS for longitudinal Needle Tracking
Initializing:
Capture desired US image
Extract image features (30), (32), and (39)
while needle is being inserted do

Capture real-time US image
Extract image features (30), (32), and (39)
Update interaction matrix Ls

Calculate probe velocities vc (40)
if probe-tissue contact is required then

Read force data
Apply internal force controller

end if
end while

TABLE 1. Ultrasound image acquisition parameters

frequency gain focus depth dyn. range power
10 MHz 79 % 14-21 mm 40 mm 72 dB −4 dB

in real-time at 50 Hz according to the specifications given
in Table 1. A standard 18-gauge bevelled tip percutaneous
access needle is attached to a second robot arm that controls
the needle movement. While in practice needle insertion is
performedmanually, herewe use a second robot arm to ensure
repeatable and measurable experimental trials. On average,
when inserted to a depth of 100-140 mm, an 18-G bevelled
tip needle deflects by 6-12 mm from a straight line [11], [44],
which is enough to test the proposed algorithm. The algorithm
is implemented on an Intel(R) Core i7-9700K computer with
a 3.60 GHz CPU, 128 GB of RAM, and a GeForce RTX 4060
graphics card. Matlab is used for both US image acquisition
and robot control, with a sampling rate of 20 Hz. The robots
communicate with the controller via EtherCAT and Twin-
CAT3.
Once the needle is positioned in the medium, the robot

holding the US probe is moved manually until the needle
becomes visible in the US image. Then the target image is
captured and stored. Afterwards, while one robot is controlled
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to move the needle, the second robot autonomously manoeu-
vres the US probe according to the velocities calculated by the
VS controller. The proportional control gains are set toKp =
diag(0.5, 0.5, 0.2, 0.2). Binary threshold image segmentation
is applied to real-time US images to generate binary images to
be used along with the raw grey-scale image, both in the close
vicinity of the tracked needle, in calculating the interaction
matrix, as shown in Fig. 1b. Three experimental scenarios are
considered using a water tank, an agar phantom, and ex-vivo
porcine tissue.

Scenario 1: In the first set of experiments, the needle is
submerged in a water tank to allow free movement in 4-DOF,
see Fig. 3(a). The robot holding the needle moves it base
along a random path with linear and angular velocities of
0 ≤ υx ≤ 6 mm/s, 0 ≤ υy ≤ 2 mm/s, 0 ≤ ωy ≤ 0.017
rad/s, and 0 ≤ ωz ≤ 0.025 rad/s - the latter induces out-
of-plane rotation of the needle compared to the imaging
plane. Although the needle does not bend in water, the robot
exaggerates out-of-plane motion to fully demonstrate the al-
gorithm’s functionality.

Scenario 2: The needle is inserted in 5% agar phantom
suitable for ultrasound imaging [62] with its bevelled tip
approximately directed towards the positive z-axis (i.e., out
of the imaging plane), see Fig. 3(b). The robot moves the
needle’s base along a straight line with a velocity of υx = 3
mm/s. As the needle is pushed into the tissue, the bevelled tip
causes the needle to deflect about its y-axis. To ensure that the
US probe remains in contact with the tissue surface, a force
control loop is used to regulate υy and ωz.

Scenario 3: A fresh piece of porcine tenderloin muscle
embedded in porcine gelatin is used, see Fig. 3(c). All other
experimental conditions are the same as in Scenario 2.

In each Scenario, 10 trials were run for 20-25 seconds each.
The features’ error and the position of each robot arm are
then evaluated. Each trial in Scenarios 2 and 3 uses a different
needle insertion point in the tissue.

IV. RESULTS AND DISCUSSION
Fig. 4 (top) shows the measured 3D displacement of the
needle and centre of image frame (nF and sF , respectively)
in a representative trial in Scenario 1. The 3D displacement
error between the US probe and the needle tip is shown in
Fig. 4 (bottom) with an average of 1.56 mm. Fig. 5 shows the
observed features error for 10 trials of this scenario, with an
average error of less than 1.6 mm in needle tip position and
less than 1◦ error in the shaft orientation.
In Scenario 2, the robot only pushes the needle into the

tissue along its x-axis. The bevel of the needle is directed
toward the z-axis, which results in out-of-plane deflection.
To measure the amount of needle deflection, at the end of
the tracking, the robot holding the probe rotates it 90◦ so
that a transverse cross section of the needle is visible in the
US image. The robot then scans the needle shaft as it moves
the probe from the needle tip back to its insertion point. The
coordinates of the centre of the needle’s cross section are then
labelled manually in the transverse images.
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trial from Scenario 1 (top) and the 3D displacement error between the
needle’s tip and US probe (bottom).
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for xtip, ytip, θ, and ϕ for all 10 trials in Scenario 1.
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TABLE 2. Mean and standard deviation of feature errors (s∗ − s) over 10 trials in each scenario

extip (mm) eytip (mm) eθ (rad) eΦ (rad)
Test scenario mean sd mean sd mean sd mean sd

Scenario 1 -1.58 1.12 -0.21 0.19 0.009 0.01 -0.013 0.02
Scenario 2 -1.238 0.88 -1.09 1.33 -0.023 0.04 -0.005 0.01
Scenario 3 -1.46 1.06 0.52 0.31 0.005 0.03 -0.018 0.01
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FIGURE 6. Measured displacement of the US probe and the needle’s tip
in Scenario 2 on the x − z plane along with four US images of the needle.
The needle’s position is measured in each transverse image along the
needle shaft.

Fig. 6 shows the displacement of the needle tip and US
probe in the x − z plane, indicating the amount of needle
deflection, with US images captured at four different times
during the procedure. Although the base of the needle was
moved along a straight line along the x-axis, its tip deflected
away from the imaging plane and the US probe was able
to follow its out-of-plane movement while translating along
with the needle tip. In this scenario, the US probemust be kept
in contact with the tissue. Therefore, the VS control law only
minimizes xtip and ϕ, which means the error values of ytip and
θ will be larger than scenario 1. Fig. 7 shows that the tracking
error for these two features is small, confirming the ability
of the proposed method to track the needle with out-of-plane
deflection.

The needle deflection measured in three representative tri-
als in Scenario 3 in Fig. 8(a) shows a 7 mm needle deflection
along the 60 mm insertion path. The US images of the needle
captured at different steps during the procedure shown in
Fig. 8(b) indicate alignment of the US imaging plane with the
needle shaft. The features error for all 10 trials in Scenario
3 shown in Fig. 9 demonstrates acceptable performance in
tracking the needle deflection in ex-vivo, with an error of less
than 1.6 mm in xtip position and 1◦ in θ.

Table 2 summarizes the mean and standard deviation of
feature errors calculated over 10 trials in each scenario. The
metrics are calculated for each feature error ei = s∗i − si as

follows:

mean =
1

N

N∑
j=1

ei(j) (42)

sd =

√√√√ 1

N − 1

N∑
j=1

|ei(j)− ēi| (43)

where N is the total number of sample data and ēi is the mean
value of the error.
According to Table 2, the maximum error in tracking a

needle with an average visible length of 20 mm is 1.58 ±
1.12 mm, which is 58% smaller than the mean allowable
needle placement error of 2.7 mm in targeted percutaneous
procedures [63]. In comparison, kidney stones treated with
PCNL typically have a diameter larger than 15 mm [64].
The procedure is performed using 16- to 24-gauge needles
(with an outer diameter of up to 1.65 mm) and the stones are
fragmented into 4-6 mm pieces before they can be removed
[9]. The free-hand needle positioning accuracy in usPCNL is
about 4.6 ± 2.1 mm [65], which is significantly higher than
the achieved tracking error. The proposed system substan-
tially reduces this error and can lead to more accurate needle
placement.
Table 3 compares the needle tracking error achieved

through the proposed method and those reported in recent
papers through other methods, such as 3D US tracking and
position sensors. While the tracking accuracy of all methods
is within a similar range, the proposed method does not
require any additional sensors and solely uses 2D US images.
An advantage of the proposed method is that it only relies

on US images and does not need the needle trajectory nor
positional information of the needle’s base or tip once the US
probe is initially aligned with the needle. Furthermore, the
presented method has low computational complexity. Run-
ning at 20 Hz, the proposed algorithm is a good candidate for
real-time applications.

V. CONCLUSION AND FUTURE WORK
This paper presents a US image-guided VS method for 4-
DOF needle tracking with two translations and one rotation
of the needle in the US imaging plane, and one rotation out of
the imaging plane. In the proposed algorithm, the US probe’s
velocity is calculated solely based on 2D US images and real-
time image moments, and without any prior knowledge of the
needle trajectory. To the best of the author’s knowledge, this
paper is the first to introduce VS for 4-DOF needle tracking
capable of tracking the moving needle with both in-plane and
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TABLE 3. Comparison of the needle tracking error through different methods

tracking method error [mm] imaging modality test environment

Cheng et al. [58] optical tracking + deep learning (DL) 3.20 ± 3.10 camera ex-vivo porcine tissue
Grube et al. [51] 3D US + DL 1.54 3D US ex-vivo liver tissue
Konh et al. [47] 3D needle shape prediction 1.20 transverse 2D US ex-vivo liver tissue
Baker et al. [55] fibre-optic tracking sensor 1.10 ± 0.70 longitudinal 2D US water, and ex-vivo bovine tissue
Che et al. [59] Optical tracking + DL 1.17 ± 0.70 longitudinal 2D US ex-vivo liver tissue
Proposed method visual servoing 1.46 ± 1.06 longitudinal 2D US water, agar, and ex-vivo porcine tissue
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FIGURE 7. Calculated error between desired and real-time image features
for xtip, ytip, θ, and ϕ for all 10 trials in Scenario 2.

out-of-plane motion. In contrast to previous algorithms, the
one introduced here does not use 3D imaging or any other
tracking sensor. The effectiveness of the proposed method is
demonstrated through experimental validation in 30 trials in 3
distinct scenarios or increasing complexity and realism. The
results show that the algorithm can successfully align the US
probe with the needle as it is steered and deflects in the tissue.

For such a tool-tracking algorithm to be used in real-time
applications, low complexity and accessibility are essential.
Although employing electromagnetic tracking systems or us-
ing 3D US imaging can provide more information regarding
the needle position and its surroundings, these technologies
are not accessible or applicable in many clinical scenarios.
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FIGURE 8. (a) Deflection of the needle from the initial imaging plane,
measured through transverse images in 3 representative trials in Scenario
3. (b) A sample of transverse US image in Scenario 3, including the
needle’s cross-section. (c) Sequential longitudinal US images in Scenario
3, indicating alignment of the transducer and the needle shaft during the
tracking procedure.

On the other hand, 2D US is widely accessible. In this paper,
a linear transducer was used, but the proposed algorithm can
also be implemented using a convex probe.
While both 16-G and 18-G needles may be used for percu-

taneous kidney access, 18-G needles are more likely to deflect
in the tissue. Therefore, experiments are done using 18-G
needles to better indicate the algorithm’s ability in tracking
out-of-plane needle motion. The algorithm’s computational
time is less than 50 ms, which makes it well-suitable for de-
ployment in real-time settings without the need for additional
resources.
Future work will focus on improving the efficiency of

the tracking in real-world scenarios by integrating the force
controller with the VS algorithm and using a more precise
image segmentation algorithm to better indicate the needle
in the image in the presence of other organs. Moreover, a
heuristic control lawwill be investigated to eliminate the need
for prior knowledge of the needle’s tip bevel orientation with
respect to the US imaging plane.
For successful clinical integration, further validation in pre-

clinical and clinical settings will be necessary, including the
following: 1) Since biological tissues exhibit varying acoustic
properties, assessing the algorithm’s robustness across differ-
ent anatomical conditions is essential; 2) Motion compensa-
tion strategies should also be investigated to account for pa-
tient breathing and involuntary tissue movement during probe
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FIGURE 9. Calculated error between desired and actual image features
for xtip, ytip, θ, and ϕ for all 10 trials in Scenario 3.

positioning; and 3) The system’s adaptability to surgical pro-
tocols should also be assessed, ensuring seamless integration
into existing PCNL procedures without introducing excessive
cognitive workload for the surgeon. Finally, we aim to work
closely with clinicians to refine the system’s usability and en-
sure it meets regulatory standards before clinical deployment.
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