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Improved Configurations for 3D Acoustoelectric
Tomography with a Minimal Number of

Electrodes
Ben Keeshan, Andy Adler, and Carlos Rossa

Abstract— Objective: Acoustoelectric tomography (AET)
is a hybrid imaging technique combining ultrasound and
electrical impedance tomography (EIT). It exploits the
acoustoelectric effect (AAE): an US wave propagating
through the medium induces a local change in conduc-
tivity, depending on the acoustoelectric properties of the
medium. Typically, AET image reconstruction is limited to
2D and most cases employ a large number of surface
electrodes. Methods: This paper investigates the detectabil-
ity of contrasts in AET. We characterize the AEE signal
as a function of the medium conductivity and electrode
placement, using a novel 3D analytical model of the AET
forward problem. The proposed model is compared to a
finite element method simulation. Results: In a cylindri-
cal geometry with an inclusion contrast of 5 times the
background and two pairs of electrodes, the maximum,
minimum, and mean suppression of the AEE signal are
68.5%, 3.12%, and 49.0%, respectively, over a random scan
of electrode positions. The proposed model is compared to
a finite element method simulation and the minimum mesh
sizes required successfully model the signal is estimated.
Conclusion: We show that the coupling of AAE and EIT
leads to a suppressed signal and the magnitude of the
reduction is a function of geometry of the medium, contrast
and electrode locations. Significance: This model can aid
in the reconstruction of AET images involving a minimum
number of electrodes to determine the optimal electrode
placement.

Index Terms— Electrical Impedance Tomography, Acous-
toelectric Tomography, Acoustoeletric effect

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) [1] is an in-
expensive, portable, and non-invasive imaging technique

with many applications in medical imaging; the dominant clin-
ical application is the monitoring of lung function ( [2], [3])
but EIT also boast successes in monitoring hemodynamics and
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related heart function ( [4], [5]), in addition to promise with
regards to imaging blood flow within the brain ( [6], [7]) and
the detection of cancer ( [8], [9]). EIT involves reconstructing
interior conductivity distributions from voltage and current
measurements on the boundary of a body, and the EIT inverse
problem is inherently ill-posed and thus suffers from poor
resolution and instabilities. To address these limitations a hy-
brid imaging technique known as acoustoelectric tomography
(AET) has been developed [10], [11]. AET relies on the
acoustoelectric effect (AEE) [12], [13], [14] which is driven
by local conductivity changes produced by a ultrasound (US)
pressure wave as it moves through a body. The time-dependent
AEE perturbations lead to changes in the EIT measurements,
from which the conductivity can then be reconstructed with
high resolution. Unfortunately, the AEE signal is extremely
small effect and can be quite difficult to measure.

Fig. 1 panels (a) and (b) illustrates the AET sensitivity,
which is proportional to σJEIT, where JEIT is the EIT
sensitivity for conductivity changes induced by the US pulse.
As the conductivity of the anomaly increases (by ∆ above
the background, σ), the Electric field E⃗ decreases, by a factor
of (1 + ∆

2σ ). In this scenario, JEIT ∝ σ∥E⃗∥2 and showing
the AET sensitivity is reduced to ( σ+∆

σ+ 1
2∆

)2, in this example.
This reduction of the AET sensitivity has not previously been
reported, and is a function of the anomaly conductivity and
geometry and the EIT stimulation and measurement config-
uration. Panels (c) and (d) in Fig. 1, show the effect of an
US perturbation within a cylinder as it travels through the
homogeneous background and an inclusion. The effect is quite
small and is magnified in the bottom panel of Fig. 1 (c) and
(d). See supplemental material for a video of this effect.

The vast majority of the AET literature focuses on
the last step of the AET process, i.e., reconstructing
the conductivity from an assumed known power density
[11], [15], [16], [17], [18]. Recently, more comprehensive
methods to solve the AET problem have tackled the initial step
of solving for the power density. In [19] the authors used a
difference EIT measurement and singular value decomposition
(SVD) based reconstruction to find the boundary potential and
an initial conductivity reconstruction. In [20] a 2-dimensional
EIT forward problem is solved involving Neumann boundary
conditions (BCs) and a regularized least squares approach
to reconstruct the power density. The conductivity is then
reconstructed from the power density by solving a regularized
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Fig. 1. Top: Illustration of AET sensitivity: equipotential lines around a
cylindrical conductive anomaly (left σ, right σ + ∆) with measurement
and current drive is on parallel plates far away. Electric field ⃗Eσ+∆

is reduced from E⃗σ by a factor of (1 + ∆
2σ

). This decreased electric
field means the AET signal, the US-induced change in σ, is also
reduced. Bottom: Conductivity changes are larger when the pulse is in a
conductive region (right). Current is applied between red electrodes and
electric equipotentials are shown. The lower figure shows the change in
potential due to the US pulse.

functional. In [21] the authors developed an approach that
incorporated the uncertainty in the propagation of the acoustic
pressure wave. For a review see [22].

In most of the literature, the AET inverse problem is
implemented using a large number of surface electrodes, and
it is mostly limited to a 2D plane. While this allows for a
reasonable reconstruction of the electrical potential along the
boundary, it substantially limits the applications of AET. A
current open challenge in AET is to solve the inverse problem
using a minimal number of surface electrodes in a volumetric
medium. A robust understanding of the forward problem
provides an insight into the physical interplay between the
EIT and AEE, can guide the design of experimental system,
determine the optimal position of electrodes and the ultrasound
wave forms that maximize the strength of the measured signal.

As illustrated, the coupling betweeen the AEE and EIT
signals reduces the signal compared to a naive expectation. It
is therefore important to understand the interplay between the
EIT sensitivity and the AEE when considering the feasibility
of an AET system. In order to accomplish this, one must
consider the 3D case; as the current flow cannot be confined
to a 2D plane. The difficulties introduced by this competition
are minimized by a system with a large number of surface
electrodes.

There are several clinical applications of an AET system
with a minimum number of measurement electrodes. An ex-

ample of a potential application would be an in- vivo imaging
system that involves dual-purpose electrodes/biopsy needles.
The feasibility of such a potentially powerful system rests
upon three fundamental questions: (1) Will the competition
between the EIT sensitivity and AEE suppress the extremely
small AEE signal to the point where it cannot be measured?
(2) If the signal is large enough to be detected, has this
competition washed away enough of the local conductivity
dependence as to render any attempt at reconstruction futile?
And (3) is the computational power needed for an realistic
simulation of the 3D forward problem small enough to be
practical?

Furthermore, any practical AET system faces two very
serious challenges; the signal-to-noise ratio (SNR) will have to
be very low and in practice the US wave speed, an essential
input of a forward model, is an experimental unknown. A
minimal 3D experimental setup is thus a very useful test of
the practicality of AET systems. If it is impossible to achieve
a sufficiently low SNR that allows for a reconstruction of
a simplified setup it will almost certainly be impossible to
reconstruct conductivities for a clinical application.

In order to answer these questions, this paper introduces a
new 3D model for the AET forward problem for a system
with a minimal number of electrodes in a simple cylindrical
geometry. This allows us to examine the problem analytically
in terms of a simple eigenfunction expansion. This model
allows us to analyze the EIT sensitivity’s conductivity depen-
dence and determine the interplay of geometric considerations
and changing inclusion contrasts on current flow. This model
also allows for the fast simulation of the effect of changing
electrode placement on the AET waveform, and an estimation
of the optimal electrode placement. i.e. a configuration that
maximizes the amplitude of the AET signal. As the model
also allows for a computationally inexpensive simulation of
the forward problem, it can be used to estimate the numerical
footprint required to implement a realistic simulation of the
3D AET forward problem, which incorporates the complete
electrode model (CEM) [23], [24], [25] in a framework well-
suited to solving the 3D inverse problem. As the model
describes a minimal experimental setups, it also allows one
to place an upper bound on the SNR needed for a practical
realization of AET.

This paper’s contributions are as follows:
1) We show for the first time the dependency of the AEE

signal and the EIT sensitivity, which has fundamental
implications for the feasibility of practical AET systems;

2) We introduce a convenient parameterization of the AET
forward problem, which allows for easy integration of
the 3D AET problem with preexisting EIT packages;
and

3) We introduce an accurate and computationally efficient
analytical model of the EIT forward problem for a
simple geometry.

II. ACOUSTOELETRIC SIGNAL SUPPRESSION

The starting point of AET is the EIT forward problem,
namely to find the potential within some closed subspace, Ω,
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of Rn (n = 2, 3) with a smooth boundary, ∂Ω, and no interior
current sources. The potential inside Ω is found by solving the
generalized Laplace equation:

∇ · σ(x)∇Φ(x) = 0, (1)

where σ(x) is the conductivity distribution within Ω and
Φ(x) is the quasi-static electric potential, subject to some
boundary conditions (BCs). In the complete electrode model
(CEM) [23], [24] the mixed BCs are (for N electrodes):∫

Ei

jdA = Ii

j = 0 on Γ′

Φ+ ziσ∇⃗Φ · ρ̂ = Vi on Γ,

(2)

where Ei, zi, σ, Vi, and Ii are the surface, impedance, con-
ductivity, voltage, and current of the ith electrode respectively,
Γ =

⋃
i Ei, Γ′ = ∂Ω − Γ, and the surface current density, j,

is given by:
j = σ(x)∇Φ(x) · n̂, (3)

where n̂ is the outward unit normal vector of the surface and
j satisfies

∫
∂
Ωj = 0.

In general, when the medium is perturbed with an ultra-
sound pulse, the change to the local conductivity can be
modelled by the simple linear relation [26]:

σp(x, t) = σ(x) + δσ(x, t) = σ(x) + kp(x, t)σ(x). (4)

Here, k = O(10−8,10−9) is a coupling constant in Pa−1,
while p(x, t) is the ultrasound pressure at position x and
time t. The perturbed potential obeys its own version of (1)
with conductivity σp and potential up. If the non-perturbed
boundary conditions are maintained, the result is a perturbation
to the power needed to maintain the boundary condition.
If the US pulse passes through the medium while an EIT
measurement is being performed it will also introduce a small
time dependent perturbation into the EIT measurement. To first
order, the dissipating power is given by [11]:

Pd(t) = −k

∫
Ω

p(x, t)σ|∇u|2dV = k

∫
Ω

p(x, t)M(σ)dV,

(5)
where M(σ) is known as the power density and dV = dx3.
Equation (5) is a Fredholm equation of the first kind and the
AET inverse problem is to reconstruct the conductivity σ given
a known p(x, t) and some measurements of M(σ). Similarly,
for a unit current input, let resulting perturbation in an EIT
voltage measurement given some drive and measurement pat-
tern is [1]:

δVinj,m = −
∫
Ω

δσ∇uinj∇umdV = −
∫
Ω

δσEinj · EmdV,

(6)
where inj is the potential corresponding to the injection elec-
trodes while um is the potential produced if the measurement
electrodes are stimulated with a unit current.

If the conductivity is discretized into N elements (e.g.,
voxels or tetrahedral elements), δσ becomes a constant over

each voxel and (6) defines the EIT Jacobian or the sensitivity
matrix:

JEIT
dm,k =

∂Vd,m

∂σk
= −

∫
Ωk

∇u(Id)∇u(Im)dV. (7)

Equations (6) and (7) allow one to parameterize the AET
forward problem in terms of the traditional EIT forward
problem. i.e.,

δV AEE
i (t) = JEIT δσ = kJEIT

il p(t)lσl, (8)

where is δV AEE
i (t) the difference between the measured

voltage of the ith EIT measurement as a function of time and
the unperturbed measurement. Using this parameterization, the
AET inverse problem consists of two steps. The first, a linear
inverse problem, is to use the measured voltages and an a priori
US model to reconstruct the power density, Mij = JEIT

ij σj

while the second is to a nonlinear inversion of M .
While a cursory examination of (8) suggests a strong

proportionality between the local conductivity perturbed by the
US and the AEE signal, this will compete with the Jacobian’s
implicit dependence on σ. In fact, a naive analysis suggests
that the AEE signal has a rather troublesome functional
dependence on σ. For a given voxel, the current density is
j = σE, where E is the electric field. Assuming the current
density is locally constant, E ≈ j

σ , gives:

JEIT = σ|E|2 ≈ |j|2

σ
. (9)

Plugging (9) into (8) with the (unrealistic and first order)
assumption of constant current flow gives:

δVi ≈ kp(t)j
1

σj
σj . (10)

which results in an exact cancellation of the dependence on
local conductivity. While this first-order assumption is obvi-
ously overly pessimistic, it does imply that the AEE signal is
suppressed relative to the naive expectation. If this cancellation
is strong enough, the signal’s dependence on conductivity will
be dominated by its dependence on the geometry of the body,
complicating the solution to the AET inverse problem.

III. 3D ANALYTICAL MODEL OF AET
The AET signal is found by solving (6) for a given US

waveform. The US waveform can be modelled as a travelling
wave packet normally distributed about the beam axis. It will
be sufficient for our purposes to use the following simplified
model:

p(ρ, ϕ, z, t) =P0e
−
(

ρ cos(ϕ)−x0
w1

)2

e
−
(

ρ sin(ϕ)−y0
w1

)2(
e
−
(

z−ct
2w2

)2

sin [2πf(z − ct)]

)
,

(11)

where x0 = r0 cos(ϕ0) and y0 = r0 sin(ϕ0) are the Cartesian
coordinates of the beam axis in the x−y plane, w1 the beam’s
spread in the x−y, w2 the width of the dominant pulse along
the z axis, A2 the amplitude of the subdominant wave modes,
P0 the peak pressure. This model approximates the far-field
plane wave produced by a circular transducer with Gaussian
apodization.
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The EIT forward problem given in (2) is simple to solve
numerically via simulations utilizing a Finite Element Method
(FEM). To optimize the electrode position, it will be conve-
nient to consider a simplified problem with regular geometry
and BCs to allow for an analytical solution that can be quickly
and easily evaluated without recourse to simulations. This
provides physical intuition into the forward problems’ depen-
dence on the local conductivity and the effect of geometry and
electrode placement. The model should approach the CEM
solution in the appropriate limit and can be easily combined
with the US model given above to define a simplified AET
forward problem.

Consider a cylinder of radius b, and height h (dimensions
(b, h)) with constant conductivity σ0 and a single pair of
rectangular injection electrodes located along the body of the
cylinder. The potential, Φ satisfies the generalized Laplace
equation with the homogeneous Neumann boundary condi-
tions in z j = −J⃗ · n̂ = 0 at z = 0, h in z and the simplified
Neumann BCs of constant current density j =

Iinj

lzlϕ
along

each electrode and zero elsewhere. Working in cylindrical
coordinates, (ρ, ϕ, z) (where ρ is the usual polar radius in the
x-y plane, ϕ is the corresponding polar angle, and z is the
Cartesian z coordinate) the BCs are:

jρ = σ0∇⃗Φ · ρ̂ = f(ϕ, z)

=
Iinj

2zebϕe


1 if ze ≤ z − z0 ≤ ze, ϕe ≤ ϕ− ϕ0 ≤ ϕe

−1 if ze ≤ z − z1 ≤ ze, ϕe ≤ ϕ− ϕ1 ≤ ϕe

0 otherwise.

jz = σ0∇⃗Φ · ẑ = 0;
(12)

The potential inside the cylinder can be expressed in terms of
modified Bessel functions (Im and Km):

Φ(ρ, ϕ, z) = V00 +

∞∑
m=−∞

∞∑
n=0

AmnRn(ρ;m)Cm(ϕ, z;n)

= V00 +

∞∑
m=0

∞∑
n=0

Rn(ρ;m) (amn cos(mϕ) + bmn sin(mϕ)) ,

(13)
where

Cm(ϕ, z;n) = eimϕ cos (knz) R0m(ρ) = ρm

Rn>0m(ρ) = Im (knρ) kn =
nπ

h

and the Amn are given in Appendix I. V00 is an arbitrary
parameter that corresponds to the potential’s ground.

Introducing a cylindrical inclusion of dimensions (a, h) with
conductivity σ1, the general solution becomes:

ΦI(ρ, ϕ, z) =A0,0 + V00+
∞∑

m=−∞

∞∑
n=1

AmnRn(ρ)Cm(ϕ, z;n) ρ < a

ΦII(ρ, ϕ, z) = Ã0,0+
∞∑

m=−∞

∞∑
n=0

Ãi
c

m,nR
i
nCm(ϕ, z;n) ρ > a,

(14)

where R1
0 = ρm, R2

0 = ρ−m, R1
n>0 = Im, R2

n>0 = Km,
and the constants are given in Appendix I. The coordinate

system and setup are shown in Fig. 2. As the normalization
of the coefficients includes the derivative of a modified Bessel
function evaluated at the boundary, the convergence of the
series has a strong dependence on ρ. For ρ < b, the series
converges quickly, its convergence being dominated by the
factor of Im(knρ)

I′
m(knb)

in the Amn. For e.g. it reaches a relative
error of O(0.1%) after only 10 terms in both n and m for
ρ = 0.9b. As ρ → b, the convergence slows, and the Amn

goes to zero as 1
n2m .

IV. MODEL VALIDATION

A. Simulation Scenarios
To validate and compare the ability of the analytical model

to approximate the CEM, the results of the model are com-
pared to a FEM simulation. The phantom used to calculate
the error in the potential is a cylinder with dimensions
(1.5, 1.2) m with either 2 attached electrodes (when comparing
the calculated EIT potential) or 4 (two injections and two
measurements when comparing the AET signal). An example
of this simulated experimental setup is shown in Figure 2.
For simplicity, the electrode positions are fixed for each
comparison, with the injection electrodes arbitrarily placed
180 degrees apart in the z = 0.5 and z = 0.7 planes for
the EIT validation. The CEM is calculated using the EIDORS
Matlab software package [27], [28] with a minimum element
size of 0.08. The electrode impedance is taken to be 1 S

m with
an injection current of 1 Amp. Using 4 attached electrodes,
electrodes 1 and 2 are driven with a 1 Amp current while the
resultant voltage is measured between 3 and 4.

For the AET signal, a simplified model of the US wave is
used. This US wave model is compared to a propagating far-
field pulse from an idealized flat transducer simulated using
Field-II [29], [30]. Field II is a C-program with a Matlab
interface that can easily be interfaced with EIDORS. It does
not require an internal spatial mesh in its simulation (instead
relying on linear spatial impulse responses). A single-element
concave transducer is simulated with a diameter of 19 mm,
and a focal length of 300 m (i.e. infinity to simulate the
unfocused plane wave case) with an element size of 1 mm. The
excitation consisted of a single period of a 1.6 MHz sinusoid
with a Gaussian weighting, scaled to produce a peak pressure
of 2.6 MHz. As EIDORS calculates the EIT Jacobian for a
given conductivity mesh, given the assumption of constant
pressure along each mesh element, the simulated AET signal
can be calculated directly from (8) while the analytical AET
signal can be found by integrating (6). The integrand can be
integrated analytically term by term, utilizing the fact that all
functions have well-defined power series over the ranges. This
allows for a code that runs extremely fast.

B. Numerical validation of the potential
The most comprehensive comparison between the calculated

and simulated EIT forward problems is to compare the simula-
tion and model at each FEM node. The relative error between
the model and the FEM simulation is shown in Figure 3 for the
homogeneous case. As expected, the models agree to relatively
high precision for smaller radii. The model begins to diverge at
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Fig. 2. Pictorial representation of the numerical experiments. Two
setups are considered: In (a), a phantom with uniform conductivity
where the homogeneous AEE voltage signal is measured, and in (b),
a phantom with constant background conductivity with a cylindrical
inclusion where the heterogeneous AEE voltage signal is measured.
The cylindrical coordinates considered in this paper are defined in
(c). In each setup an US pressure wave travels through the phantom
generating AEE signal, the strength of which depends on the electrode
placement. An example of a FEM simulation of the homogeneous
cylindrical phantom is shown in (d).

the boundary where the difference in BCs becomes significant,
and where one would expect to see FEM errors. Fig. 3 also
shows the distribution of nodes with large relative errors in the
x-y plane. The error increases by about an order of magnitude
between the small 1 cm × 1 cm electrodes and the larger
50 cm × 50 cm electrodes. As can be seen, the analytical
model is quite accurate for ρ << b and begins to diverge at
the boundary. As expected, the disagreement increases as the
electrode size increases but it is still fairly accurate for small
radii. The only exception to this is the zero-line of the potential
(in this case along x = 0). This is a result of irreducible errors
in the FEM which prevent it from becoming arbitrarily small.
As, this is not the case in the model the disagreement along
this line is expected and can be ignored.

C. Validation of US model

In Fig. 4, the model of the US pulse is compared to a
pulse from a simulated transducer. It compares the x-y spread
of the pressure wave in the far field (z = 8 cm) and the
pressure along x = y = 0 as a function of z for two
different time points. The x − y spread of the model lacks
the periodicity and slight non-symmetry of the simulated pulse
but as these a extremely subleading effects (0.0001% of the
peak) they can be safely ignored. The parameters are chosen
to be: f = 8 MHz/mm, w2 = 0.46 mm, x0 = 0, y0=0,
w1 = 9 mm, and P0 was chosen to correspond to the peak
pressure of the simulated wave at a particular time point.

Fig. 3. Comparison between the analytical model and FEM CEM.
The sum in (13) was truncated after 40 terms in both m and n. In
addition, the V00 term is not fixed using Neumann BCs and was set
to be equal to the FEM node at the smallest radius. The disagreement
between FEM and the model at each node of the FEM is shown. (a)
Absolute value of the error (1 cm by 1 cm electrodes). (b) Absolute
value of the error (10 cm by 10 cm electrodes). (c) Distribution of large
relative errors (> 0.5% in the xy-plane for 1mm by 1mm electrodes. (d)
Distribution of large relative errors (> 0.5% in the xy-plane for 5mm by
5mm electrodes.
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-10
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0

10

5

0
-1 -1

-2 -2

Fig. 4. Comparison between the simplified US model and a simulation
of a single-element concave transducer, with a diameter of 19 mm, a
focal length of 300 m with an element size of 1 mm. The excitation
consisted of a single period of a 1.6 MHz sinusoid with a Gaussian
weighting, scaled to produce a peak pressure of 2.6 MPa. (a) The
difference between the simulated and modelled pressure waves in the
x − y plane. (b) The pressure wave along z on the beam axis in the
model and the simulation.

The sinusoidal tail of the US wave is modelled by a low-
frequency sine wave multiplying a Heaviside step function.
As its effect on the AEE signal is quite small, the coefficient
of this term is set to zero for computational efficiency. The
AET signal can be calculated from (8) and (6) for the FEM
and the model respectively. An example calculated waveform
is shown in Figure 5. In both cases shown, the injection and
measurement electrodes are placed at different z-planes. For
the larger cylinder, the (pointlike) injection electrodes at z = 1
mm and the (pointlike) measurement electrodes at z = 99
mm while there are placed at z = 3 mm and z = 5 mm
for the small cylinder. The electrode pairs are positioned at
0 and 180 degrees respectively. In order to maximize the
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Fig. 5. Comparison of the AET waveform in the model for two
different geometries. (a) The rate of convergence of the FEM AET
waveform in a (10 cm,10 cm) cylinder. The error is defined as: E =∑

t

(
V

FEMp
t − V FEM38

t

)2
/
∣∣∣V FEM38

t

∣∣∣ where the sum is over all
time points. Though it is not shown, it approaches the analytical model.
(b) The AET waveform in a (1 cm,1 cm) cylinder (plane wave case) was
calculated using the FEM and the analytical model truncating the sums
at 110 terms.

agreement, the FEM electrode size was chosen to be a 2 mm ×
2 mm rectangle with the impedance set to 1 Ω. Electrode size
effects introduce significant deviations between the models.
To minimize these effects, the optimal electrode size for the
analytical model electrode size determined by the least squares
fit to be a 1.59 mm × 2.1 mm. These optimized electrode
sizes can also absorb some disagreement due to FEM mesh
size effects. While there is some disagreement between the
models, the major features of the signals are the same.

V. PROPERTIES OF THE AEE SIGNAL AND
DEPENDENCE ON ELECTRODE POSITION

The model, presented and validated above, gives a signif-
icant amount of insight into the AET forward problem as
it allows for analytical analysis of the homogeneous AEE
signal’s dependence on electrode position, the US properties,
and the medium’s conductivity. The nature of the eigenexpan-
sion somewhat obscures the signal’s dependence on electrode
position but still allows one to determine the symmetries
that will maximize or minimize the signal strength. For
the heterogeneous case, a term-by-term comparison with the
homogeneous case allows one to determine the result of the
competition between the EIT sensitivity and the AEE coupling.

A. Homogeneous Case

From (6) and (2), the AEE signal is given by:

δVAEE = kσ0

∫ b

0

∫ 2π

0

∫ h

0

P (ρ, ϕ, z, t)ρdρdϕdz∑
∇ [AmInnIn

RnIn
(ρ)CmIn(ϕ, z;nIn)]

· ∇ [AmMnM
RnM

(ρ)CmM
(ϕ, z;nM )] .

(15)

To describe the scaling of the signal and its temporal waveform
as a function of electrode position and the US beam axis and
beam spread, it is necessary to expand out the dot product
in (15) and describe the various terms at each order in the

eigen-expansion. This expansion can be parameterized as:

δVAEE =

∫
P (ρ, ϕ, z, t)ρdρdϕdz[

Rp(m,n)2A(m,n)2Z(n)2

+R(m,n)2Ap(m,n)2Z(n)2

+R(m,n)2A(m,n)2Zp(n)
2
]

(16)

where e.g. A(m,n)2 = A(mIn, nIn)A(mM , nM ), the sub-
script p represents the derivative coming from the gradient, and
there is an implicit sum over the m = mM , mIn, and n = nM ,
nIn. The naive expectation is that the higher order terms in this
sum will be suppressed by the coefficients, AmMnM

. However,
AmMnM

is gives an

AmMnM
∼ sin(knze)

k2n

sin(mϕe)

m
,

is partially cancelled by factors of kn and m introduced by the
differentiation. In any case, the dominant source of suppression
of higher modes comes from the ρϕ integration, represented
above by the RA functions. This is especially relevant for
small electrodes, as the factor of e.g. sin(knze) will cancel
out another factor of n−1 suppression while ϕe << nπ/h. In
this case, the higher n (and m) modes are not suppressed
via the coefficients in the eigen-expansion, but by the ρϕ
integration. Since the waveform is determined by the relative
suppression between z-modes (resulting from the z integration,
in this case the shape of the AEE signal is dominated by
the geometry of the cylinder, not the electrode placement. An
advantage of this analytical approach is that these integrals
can be formally calculated within the model giving additional
insight into the AEE signal’s dependence on the cylinder’s
dimensions. For the details, see the supplemental Appendix.
Both the z and the angular integration can be done analytically.
This integration distinguishes two cases; the simple case with
angular symmetry with only involves the same m-modes (i.e.
all terms vanish except when mIn = mM ) and the case
where the beam axis is off-center which mixes the different m-
modes together and opens up additional cross-terms between
the n = 0 and n > 0 modes. In general, the off-center
integration results in an enhancement of modes m = m1+m2

where m1 and m2 are close together and suppression of the
modes where they are far apart.

While the final ρ integration lacks a closed form solution,
the form of its power series, ensures that the higher order
modes are suppressed, though the speed of this suppression is
strongly dependent on the relative values of w1 and b as well
as the radial function. For the n = 0, m > 1 modes, the radial
function is simply

R(m, 0) = ρmIn+mM−1

and the higher m modes are suppressed by factors of

mInmM

(w1

b

)mIn+mM

For n > 0 modes, the Amn ∼ 1
I′
m(knρ) and the effect of ρ

integration is to truncate the power series of the numerator

ImIn
(knInw1)ImM

(knMw1)

I ′mIn
(knInb)I ′mM

(knMb)
.
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If b >> w1, this truncation occurs rapidly and combined with
each term in the sum of the numerator is already suppressed
by
(
w1

b

)n
relative to the corresponding term of the sum in the

denominator only a few n modes contribute to the AEE signal.
If w1 ∼ b, the truncation occurs very slowly and therefore
more modes need to be included.

For the higher m modes, in addition to the above effect
suppression, there is also a suppression of O(wmIn+mM

1 ),
which is similar to the suppression in the n = 0 modes. This
implies that the naive expectation is that for a sufficiently large
radius, the n = 0 modes will dominate the waveform unless
they are suppressed by the placement of the electrodes, which
determines the numerator of the Amn.

As the beam axis moves away from the origin, the angular
integration introduces a Gaussian suppression of the form
exp

(
r20/w

2
1

)
, which makes this approach an impractical way

to perform the integration. It does however clearly demon-
strates that moving the beam axis away from the origin will
not drastically change the order by order suppression though
it does allow for additional combinations of Amn in the
numerator, which will change how the electrode placement
affects the signal strength and the selection of the dominate
z modes. This Gaussian suppression also implies that the
sensitivity to tightly focused beams will be suppressed as the
beam approaches the boundaries.

B. Heterogeneous Case
The behaviour of the heterogeneous AEE signal relative to

the homogeneous case can be understood by rearranging (24)-
(26). The behaviour in the case where the US probe is focused
within the inclusion is quite similar to the homogeneous case
as the potential has the same functional dependence on ρ.
Using the constants given in Appendix I, the n = 0 modes of
the potential (which describe the ρm terms) can be written:

Φinc
m0 = Φhomo 1

∆

(
1 +

(a
b

)2m 1

∆′

)−1

, (17)

where

∆ = 1 +
σ1 − σ0

2σ0
, and ∆′ = 1 +

2σ0

σ1 − σ0
.

As m increases, the conductivity dependence approaches 1
∆ .

Similarly, the n > 0 modes can be written:

Φinc
mn = Φhomo

(
1 +

(1−R′
m(σ1 − σ0)

(1−R)σ0

)−1

, (18)

where
Rm =

K ′
m(kna)

Km(kna)

Im(kna)

I ′m(kna)

which is Rm ≈ −1.4 for m = 0, goes to −1 as m and n
increase, while

R′
m =

K ′
m(knb)

Km(kna)

Im(kna)

I ′m(knb)
(19)

goes to zero in the same limit. As m and n increase, this
approaches the same limit as the ρm terms. As the sensitivity
is given by σE · E, the sensitivity approaches

S =
4σ1

(σ0 + σ1)2
(20)

taking into account the 1
σ0

dependence of Φhomo. When ρ > a,
the radial modes that diverge at the origin must be included,
which opens up additional radial dependencies. For the n = 0
modes ρm + ρ−m, the potential is:

Φinc
m0 = Φhomo

(
1− a2m

ρ2m∆′

)(
1 +

a2m

b2m∆′

)−1

Einc
ρm0 = Ehomo

ρ

(
1 +

a2m

ρ2m+1∆′

)(
1 +

a2m

b2m∆′

)−1

.

(21)

Similarly for the n > 0 modes, the potential goes as:

Φinc
m0 = Φhomo

([
1− Rρm

1 + Fσ0

∆σ

][
1− R′

m

1 + Fσ0

∆σ

])−1

Einc
ρ = Ehomo

([
1−

R′
ρm

1 + Fσ0

∆σ

][
1− R′

m

1 + Fσ0

∆σ

])−1

.

(22)

where

Rρm =
Km(knρ)

Km(kna)

Im(kna)

Im(knρ)
∆σ = σ1 − σ0

R′
ρm =

K ′
m(knρ)

Km(kna)

Im(kna)

I ′m(knρ)
F = (1−Rm).

The behaviour of the signal as a function of conductivity
is much more complicated than the ρ < a case. As the
radius increases, the conductivity dependence cancels, and the
enhancement or suppression for higher-order terms approaches
zero. As σ1 increases, there is always an enhancement of the
ρ; n > 0 modes since

R′
m ≤ R′

ρm

K ′
m(x) < 0.

Conversely, the ϕ and z n > 0 modes are always suppressed,
as 0 < Rρm ≤ 1 and Rm < 0. For the n = 0 modes, there is
radial enhancement if ρ > b

2m
2m+1 and a suppression otherwise.

If σ1 < σ0 this pattern is reversed. In general, this implies
suppression as σ1 increases and enhancement as it goes to
zero.

In summary, as the US pulse passes through an inclusion,
there will always be an approximately global suppression
(enhancement) of the signal relative to the homogeneous case
as the inclusion conductivity increases (decreases). There is a
mode-by-mode dependence, which washes out for the higher
modes. This will slightly alter the waveform as the lower
modes are somewhat suppressed relative to the higher modes.
The effect will thus be most significant for signals which are
dominated by the lower modes. As the US wave pulse reaches
the boundary of the inclusion, there can be an enhancement to
the signal, depending on the relative importance of the radial
modes of the electric field. Away from the inclusion, the signal
approaches the homogeneous limit.

The observed behaviour always applies to a setup with
cylindrical symmetry. While this setup represents the min-
imal implementation of AET, any practical application will
certainly involve more complex geometries. It is important
to therefore understand how the above conclusions gener-
alize to other geometries. As summarized in Section V-C,
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Fig. 6 and 7, the observed signal depends drastically on
the eigenfunction expansion, i.e., if the dominant mode is
maximized or suppressed. On the other hand, the behaviour
of the signal discussed in this section depends primarily
on the patterns between the modes of the eigen-expansion
and are applicable to more general situations. Since in this
case the eigen-expansion must be calculated numerically, the
physical intuition derived from the simplified model should be
particularly useful in these cases.

C. Results

The AEE signal strength is a function of the cylinder’s
dimensions, the electrode placement, and the US beam axis.
The cylinder’s geometry determines the relative suppression
of the different z-modes of the AEE signal, which is constant
for every combination of electrode and US beam placement.
The electrode placement scales the relative contributions of
the cos and sin z modes. In principle, there is a functional
dependence, determined by the geometric suppression. If the
cylinder radius is sufficiently large, on the order of a couple
of cms, the leading terms will dominate and the functional
dependence reduces to a more simplified dependence. Regard-
less, certain choices of angular or z symmetry can force the
contributions of different modes to zero. For example, placing
the measurement or injection electrodes at the same angular
position will remove the n = 0 modes. Similarly placing the
electrodes along the same z-plane removes the m = 0 modes.
The effect on the AEE signal is shown in Fig. 7.

The effect of the AEE signal of changing the conductivity
for the case with inclusion is shown in Fig. 6. Two different
behaviours are investigated. The behaviour of the signal of a
central US pulse as a function of conductivity and radius of
the inclusion. The functional dependence on the conductivity
generally follows the naive expectation derived above. To
show this, Fig. 6 gives an example case, where the electrode
pairs are placed at 0 and 180 degrees with the injection
(measurement) at z = 0.2h mm (z = 0.8h mm). Since the
signals are dominated by the lower modes which for the US
pulse considered produce sharp peaks as the pulse enters and
exits the cylinder, the peak signal including and excluding
these peaks are included. The peak signal, dominated by the
lower modes, goes to zero as σ1 → 0 as expected by the
approximate σ1

(σ0+σ1)2
while the peak signal near the electrodes

increases as it is more sensitive to changes in the relative
contribution these modes and the enhancements caused by the
ρ > a integration. Since the higher modes are less suppressed
for the thinner cylinder, these effects are much stronger and
the signal strength is enhanced for almost all conductivities.
The dependence of the peak signal on the radius of the
inclusion follows a similar pattern. The effect on the peak
signal is muted but there are significant enhancements to the
signal away from the edges where the ρ > a enhancements
dominate. Fig. 6 also includes the results of a scan over
1500 random electrode positions. The only requirement on the
electrode positions where that they was a minimum distance
0.05b separating each electrode. The 3rd and 4th panels of
Fig. 6 give the results of this scans, showing the maximum,

minimum, and mean ratio of the peak inclusion signal to the
peak homogeneous signal for the same electrode placement.
They show that while enhancements are possible, especially
for the thinner cylinder, the competition between the AEE and
EIT tends to result in mean suppression of the signal, which
approaches 60% as conductivity of the inclusion reaches 8
S/m and as the radius of the inclusion increases. The results
shows that the schematic relationship between AET sensitivity
and anomaly conductivity sketched out in Fig. 1 generally
holds but in rare cases the suppression of the sensitivity of
the anomaly is out competed by the effect of current flow
in the homogeneous background. The 5th and 6th panels of
Fig. 6 show the ratio maximum and mean suppression (or
enhancement) of the inclusion voltage signal excluding the
edges to the peak of the largest homogeneous signal of all
scan points, not the corresponding point in the scan as in Figs.
(5c) and (5d). Though it is not shown, when the homogeneous
signal is small and dominated by the edges, the introduction
of a inclusion can lead to large enhancements to the signal
away from the edges (as large as an order of magnitude) by
introducing larger wavelength oscillations into the signal. Figs.
(5e) and (5f) show that while significant enhancements (i.e.
up to 200%) are possible on average there is a significant
suppression of the peak signal. The inclusion conductivity is
chosen to cover the range of typical contrasts typically seen
in biological tissue [31], [32], [33]. In particular, the choice
of a contrast of 5 times the background as the reference point
when showing the radial dependence is arbitrary. Figure 7
compares the peak AET waveform for two different geometries
and electrode placements. The different placement is chosen to
either maximize or minimize different modes to demonstrate
the effect of electrode placement on the AEE signal. The
electrodes configurations are: Configuration 1) Electrodes are
placed along 2 z-planes (a injection plane and a measurement
plane) a distance d apart at 0 and 180 degrees respectively
(where d = 0 corresponds both the injection and measure-
ments lying along the z = 0.5h mm plane. Configuration 2)
Electrodes are placed along the z = 0.5h mm plane, each
measurement and injection pair 180 degrees apart with an
angular offset ϕ between the first measurement electrode and
the first injection electrode. Configuration 3) The injection
electrodes are placed along the ϕ = 0-plane and the mea-
surement electrodes along ϕ = 180 plane; the 1st injection
and measurement electrodes are placed on the z = 0.5h mm
plane while the second injection and measurement electrodes
are placed along a variable z-plane. The two cylinder’s are a
(100 mm,100 mm) cylinder and a (200 mm,40 mm) cylinder
respectively. The differences between the results for each
cylinder highlights the importance of higher higher order
modes for cylinders where the radius is small compared to
the height. The first configuration shows how the signal scales
as a function of distance between injection and electrodes.
The second configuration highlights the strong dependence
of the signal sensitivity to angular symmetries while the
third minimizes the normal leading order dominant modes,
demonstrating the importance in electrode placement on the
signal strength.

Finally, Fig. 8 shows the dependence of the radius on the
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Fig. 6. The dependence of ratios of the peak AEE signal as a
function of the inclusion for electrodes for a (100 mm,100 mm) and
(200 mm,20 mm) cylinder. RP is the ratio of the peak inclusion signal to
the peak homogeneous signal for a given electrode configuration. R1%
is the peak inclusion signal normalized to a = 1%b. RPMax is the
ratio of the peak inclusion signal to the maximum peak homogeneous
signal of all scan points. (a) Variable conductivity and a fixed inclusion
radius of ρi = 0.3b mm for a single electrode configuration. (b) Variable
inclusion radius and a fixed conductivity of 5 S/m for a single electrode
configuration. (c) Variable conductivity and a fixed inclusion radius of
ρi = 0.3b mm over a scan of random electrode configurations.
(d) Variable radius and a fixed conductivity of 5 S/m over a scan
of random electrode configurations excluding the signal’s edges. (e)
Variable conductivity and a fixed inclusion radius of ρi = 0.3b mm over
a scan of random electrode configurations. (f) Variable radius and a fixed
conductivity of 5 S/m over a scan of random electrode configurations
excluding the signal’s edges.

xy-integration. As the xy-integration generally determines the
order at which higher z modes are cut-off, the relative size of
these terms, which captures the effect of the cylinder geometry
on the signal, can have a large impact on the AEE signal.
Two cases are shown. One where the cylinder radius equals
the height and another where the radius is half the height. In
summary, this analysis reveals three important observations:

• Electrode placement is essential to maximizing the AEE
signal’s amplitude and the signal acquisition in a realistic
minimal AET setup.

• For a cylindrical model, the ratio of the radius to the
height is the main driver of both the maximum signal

Fig. 7. Comparison of the peak homogeneous AET waveform in the
model for two different geometries and three choices of symmetric
electrode placements. (a) A (100 mm,100 mm) cylinder with place-
ment 1). (b) A (200 mm,40 mm) cylinder with placement 1). (c) A
(100 mm,100 mm) cylinder with placement 2). (d) A (200 mm,40 mm)
cylinder with placement 2).(c) A (100 mm,100 mm) cylinder with place-
ment 3). (d) A (200 mm,40 mm) cylinder with placement 3).

Fig. 8. Size of the leading xy integration as a function of cylinder
radius for a cylinder of dimensions (h,h) and (h,h

5
). (a) The leading

terms for a (h,h) cylinder. (b) The leading terms for a (h,h
5

) cylinder. (c)
The subleading n=2 term for integration of the m = 1;n = 1;m =
1;n = 2 of the Eρ · Eρ term for a (h,h) and a (h,h

5
) cylinder.
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amplitude and the relative size of the waveform’s peaks.
• Despite the potential for a strong cancellation between

the conductivity dependence of the linear AEE coupling
and the EIT sensitivity, the AEE signal retains a strong
dependence on the conductivity.

VI. DISCUSSION

The model of the AET forward problem given by (8) has the
potential to be a useful parameterization for solving the AET
inverse problem. The form of (8) has two main implications
for the AET problem. Firstly, since the signal is proportional to
the EIT Jacobian, areas of a body with zero sensitivity for EIT
should still have zero sensitivity in AET. Secondly, and more
importantly, the effect of the EIT Jacobian seemingly competes
with the AEE effect, washing out the naively expected linear
dependence on σ. The approximate form of the Jacobian,

JEIT = σ|E|2 ≈ |j|2

σ

combined with a first-order approximation of local current
flow results in an exact element-by-element cancellation be-
tween the conductivity dependence of the AEE and the EIT
sensitivity. If this held to higher orders, the signal would be
determined by the geometry of the target and the form of
the pressure wave. If the AEE signal is dominated by the
geometry of the body, it would make it quite difficult to solve
the inverse problem with a small number of EIT measurements
(as opposed to using a larger number of measurements to
reconstruct the boundary potential as in [19]).

Furthermore, the main advantage of this approach to the
AEE problem is that the mesh used to discretize the conduc-
tivity can be used to simulate the pressure wave. This mesh
is large compared to the scale of a focused US pulse, so
it is important to determine the FEM mesh size required to
accurately model the AET forward problem. Fig. 5 shows the
comparison between the FEM simulation and the simplified
analytical model. While the strong agreement between the
FEM and model potential within the area probed by the US
pulse suggests that the model and simulation of the AEE
signal could agree to similar precision, the different BCs
prevent this as electrode effects play an important role in the
calculation of the Jacobian. Despite this, the comparison shows
that the analytical model is a reasonable proxy for the FEM
simulation, validating both the FEM simulation and the model.
Also shown in Fig. 5 is the additional mesh interpolation of
the US pulse needed before the FEM converges to a stable
result. The maximum mesh size in the FEM simulation is
1 mm, suggesting the US pulse needs to be calculated to a
fitness of approximately 0.05 mm. The computational power
required to make a full simulation of the AET forward problem
should therefore be well within the reach of a decent personal
computer.

The agreement between the FEM simulation and the model
also suggests that the physical intuition gleaned from the
model as well as the results given in Fig. 7 related to signal
strength will apply equally well to the more realistic FEM.
While the signal is generally quite small, choices in the
geometry of the body and the placement of the electrodes

can greatly help or hinder an experimental attempt to reliably
observe the AEE, an essential step for any practical minimal
AET system.

This work suggests that for a cylindrical object, the signal
should be strongest for objects whose height is large relative
to their radius. Without recourse to symmetry to suppress
particular modes, the signal was generally dominated by the
time points corresponding to the US pulse entering and leaving
the body. This feature can largely be attributed to the use of
a perfectly symmetric US pulse. While assymmetries in the
pulse will most likely result in a washing out of this effect, it
provides an additional mechanism to enhance the AEE signal
as the US pulse enters an inclusion. Ignoring this boundary
effect, the model implies that the optimal electrode placement
for the injection or measurement electrodes should be along
the same z-plane, 180 degrees apart (i.e. maximally spaced)
with the two z-planes close together. The ideal separation
is most likely half the US pulse wavelength so that as the
pressure wave passes through the electrode planes, the positive
peak is aligned with one plane and the negative peak with
the other. This does not seem to be a particularly practical
setup for most applications of AET, but is definitely feasible
in an application involving e.g. biopsy needles which are also
instrumented as EIT electrodes.

The model shows that the local conductivity dependence of
the AEE signal does not cancel as a naive parameterization
of (8) would imply. Though the signal maintains a strong
dependence on the geometry of the cylinder and the US beam
axis, the AEE signal when the inclusion is being probed, also
has a strong order-independent conductivity dependence that
tends to enhance the signal when the inclusion conductivity is
smaller than the background and suppresses the signal when
it is larger. When the region outside the inclusion is being
probed, the conductivity dependence has roughly the same
dependence as the homogeneous case but there is generally an
enhancement as the US probes the boundary of the inclusion.
Thus both the suppression of the signal as the US pulse enters
regions of higher conductivity and the enhancement at the
boundary suggest that a minimal AET setup provides sufficient
information to solve the inverse problem assuming the small
signal can be reliably measured in vivo.

The above argument focuses on AET using a minimal setup
and considers the case of the ideal AET inverse problem, i.e.,
one that: (1) ignores uncertainty in the US wave speed, which
makes it difficult to accurately model the forward problem,
and (2) assumes a signal-to-noise (SNR) ratio small enough
for the signal to be reliably detected. The key quantity to
determine whether a particular AET application is feasible is
the signal strength; which is primarily a function of pulse
strength, conductivity distribution and electrode positions.
We have modeled a geometric scenario which retains these
key features and incorporates the interactions between the
ultrasound conductivity in 3D. This model leads to one of
the easiest experimental setups where the AEE signal can
be detected and the AET conductivity distribution can be
reconstructed. The model then represents a reasonable best-
case scenario, and can be used to test the effectiveness of
AET sensors and equipment. This makes it possible to place
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an upper bound on the SNR that the system needs to achieve to
detect the AEE signal and realize AET. With results presented
in the previous section, the upper bound can be placed by top-
normalizing the signals given in Figs 6, 7 to the corresponding
EIT signal, which, for the parameters considered above, is
O(10mV). Thus, a realistic AET system would need an EIT
SNR of at least 1% to detect the edges of the AEE signal and
an EIT SNR of 0.0001% to achieve an AEE SNR of 10%. The
required uncertainty in the US propagation is more difficult to
estimate, as the model requires a constant speed as the US
propagates through the medium. If the US speed is constant,
any uncertainty in the speed will result in a corresponding
global compression or stretching of the AEE waveform. This
effect should have a limited impact on the AET reconstruction
compared to the effect of variable US propagation speed.

VII. CONCLUSION

AET is a promising technique with the potential to com-
bine the non-invasive imaging abilities of EIT with the high
resolution of US. While most research has focused on only
one part of the reconstruction process, recent research has
begun to turn to more realistic and concrete scenarios. These
scenarios are simple 2D geometries with setups that involve
a large number of EIT boundary electrodes. More minimal
AET setups, which involve single pairs of injection and/or
measurement electrodes have the potential to provide useful
in vivo imaging in situations that involve e.g. dual purpose
electrodes/biopsy needles. Before scenarios such as these can
be realized, it is important to characterize and understand the
AET forward problem.

This paper introduced an analytical model of the AET for-
ward problem given simplified BCs on the injection electrodes.
The model considers the case of a simple 3D geometry, a
cylinder with one pair of injected electrodes and one pair of
measurement electrodes. It was compared to a more realistic
CEM FEM simulation of the forward problem and shown to be
a reasonable proxy for the FEM simulation. Using this model,
the idealized measurement voltage induced by a simplified US
pulse was calculated to first order. The AEE signal was shown
to have a significant dependence on the cylinder’s dimensions,
and electrode placement, with the optimal electrode placement
consisting of a measurement z-plane and an injection z-plane
separated by a minimal distance with the two measurements
and injection placed at 0 and 180 degrees. The AEE signal’s
dependence on the conductivity of an inclusion was also
investigated and it was shown that the signal’s dependence on
conductivity was not washed out by the competing effect of
the linear AEE coupling and the 1

σ of the EIT Jacobian and
contained enough information to allow for a solution to the
inverse problem, assuming the small size of the AEE signal
allows for reliable measurement.
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APPENDIX I
ANALYTICAL MODEL

The constants in the homogeneous case are given by:

Am,n =
Iinj

σ0zebϕek2nπhmI ′m
(
nπb
h

) sin(knze) sin(mϕe)

[cos(knz0) (−i sin(mϕ0) + cos(mϕ0))

− cos(knz1) (−i sin(mϕ1) + cos(mϕ1))]

A0,n =
Iinj

σ0zebk2nπhI
′
0

(
nπb
h

) sin(knze)
[cos(knz0)− cos(knz1)]

Am,0 =
Iinj

σ0bϕem2πhbm−1
sin(mϕe)

[−i (sin(mϕ0)− sin(mϕ)) + cos(mϕ0)− cos(mϕ1)] .
(23)

Taking ze and ϕe to zero yields the point electrode case which
converges very slowly as ρ → b. Introducing a cylindrical ar-
tifact of dimensions (b, h) with conductivity σ1, the constants
in the two regions are related via:

Ãmn = B̃mn
σ1

σ0 − σ1

[
K(kna)

I(kna)
− σ0

σ1

K ′
m(kna)

I ′(kna)

]
Ãmn = B̃mn

BÃc
m0 = B̃c

m0B0

Ãs
m0 = B̃c

m0B0

Ãc
m0 =

B̃c
m0

a2m

(
σ0 + σ1

σ0 − σ1

)
Ãs

m0 =
B̃s

m0

a2m

(
σ0 + σ1

σ0 − σ1

)
,

(24)

where

Amn = B̃mn

(
B +

Km(kna)

Im(kna)

)
am0 = B̃c

m0

(
B0 +

1

a2m

)
bm0 = B̃s

m0

(
B0 +

1

a2m

)
.

(25)

Where the B̃s are:

A00 = Ã00

B̃c
m0 =

Iinj
σ0mπhb

cos(mϕ0)− cos(mϕ1)

Bcbm−1 − b−m−1

B̃s
m0 =

Iinj
σ0mπhb

(sin(mϕ0)− sin(mϕ1))
sin(mϕe)

mϕe

Bcbm−1 − b−m−1

B̃0n =
Iinj

σ0mπhb

[(cos(knz0)− cos(knz1))]
sin(knze)

knze

BI ′0
(
nπb
h

)
+K ′

0

(
nπb
h

)
B̃c

mn =
2Iinj

σ0knπhb

[cos(knz0) (cos(mϕ0))− cos(knz1) cos(mϕ0)]

BI ′0
(
nπb
h

)
+K ′

0

(
nπb
h

)
sin(mϕe)

mϕe

sin(knze)

knze

B̃s
mn =

2Iinj
σ0knπhb

[cos(knz0) (sin(mϕ0))− cos(knz1) sin(mϕ0)]

BI ′0
(
nπb
h

)
+K ′

0

(
nπb
h

)
sin(mϕe)

mϕe

sin(knze)

knze
.

(26)
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Spatial Integration of the US Perturbation The effect of
an US perturbating the conductivity is calculated using the
sensitivity:

dVmeas =

∫
rdrdϕdzδ(σ)Sens(r, ϕ, z). (1)

The order by order z integration can easy be solve analytically
using they have the following integrals:

Z1 =

∫ h

0

sin(k(zt) exp

[
−
(

zt
w2

)2
]
dz

= −w2

√
π

2
exp

[
− (kw2)

2

4

]
Im
(
erf

[
ht

w2
+ i

kw2

2

]
− erf

[
− ct

w2
+ i

kw2

2

])
Z2 =

∫ h

0

cos(kzt) exp

[
−
(

zt
w2

)2
]
dz

= −w2

√
π

2
exp

[
− (kw2)

2

4

]
Re
(
erf

[
ht

w2
+ i

kw2

2

]
− erf

[
− ct

w2
+ i

kw2

2

])

(2)

where k(knM
, knIn), zt = z− ct, ht = h− ct, and erf is the

error function. The ρϕ integrals are of the form:

R1 =

∫ b

0

∫ 2π

0

f(ϕ)F (ρ;mM ,mIn, nM , nIn)

exp

[
−
(
r20
w2

1

)]
exp

[
2ρ

w2
1

(x0 cos(ϕ) + y0 sin(ϕ))

]
exp

[
−
(

ρ

w1

)2
]
dϕdρ,

(3)

where the angular dependence is of the form

f(ϕ;mM ,mIn) = cos(mIn +mM )± cos(mIn −mM ), or
f(ϕ;mM ,mIn) = sin(mIn +mM )± sin(mIn −mM )

For a radially symmetric US pulse, the orthogonality of
cos(mϕ) and sin(mϕ) simply gives

πamn1amn2 + πbmn1bmn2(2πamn1amn2)

for m > 0 (m = 0). Moving the beam axis is off-center results
in non-zero cross-terms am1n1bm2n1 and mixes the different
m-modes as the integration is of the form:∫ 2π

0

exp

[
2ρ

w2
1

(r0 cos(ϕ0) cos(ϕ) + r0 sin(ϕ0) sin(ϕ))

]
cos(mϕ)dϕ = 2πIm

(
r0

2ρ

w2
1

)
cos(mϕ0)∫ 2π

0

exp

[
2ρ

w2
1

(r0 cos(ϕ0) sin(ϕ) + r0 sin(ϕ0) sin(ϕ))

]
sin(mϕ)dϕ = 2πIm

(
r0

2ρ

w2
1

)
sin(mϕ0).

(4)

The non-zero terms from the symmetric case become

π(cos((m1 +m2)ϕ0)Im1+m2
± Im1−m2

cos((m1 −m2)ϕ0))

for am1n1
, am2n2

and bm1n1
, bm2n2

, respectively, while the
cross terms become

π(sin((m1 +m2)ϕ0)Im1+m2 + Im1−m2 sin((m1 −m2)ϕ0))

for bm1n1 and am2n2 . The resulting ρ integral does not have a
closed form. It can be useful to convolute the power series into
a Cauchy product which reduces the ρ integral to the form:

R1 =

∞∑
i=0

∫ b

0

cix
i+p exp

[
−
(

ρ

w1

)2
]
dρ

=

∞∑
i=0

cn
wi+p+1

1

2
γ

(
n+ p+ 1

2
,

[
b

w1

]2)
,

(5)

where γ(n, x) is the lower incomplete gamma function.


