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A B S T R A C T

There has been a growing interest in developing electric impedance sensing surgical tools for tissue identification
during surgery. A key facet of this development is identifying distinct features that can be used to identify tissues
from one another. This paper explores several feature extraction techniques and classification methods applied
to electric impedance data. Furthermore, a modified forward stepwise method is proposed. The method intro-
duces a scoring metric to help select features to add to the model, that is based off of the coefficient of variation
and overlapping index from the feature's probability density functions for each of the classes. The proposed and
existing methods were applied to spectral data measured at 23 frequencies, from 132 samples across 6 different
tissues including ex-vivo bovine kidney, liver and muscle, poultry liver, as well as freshly excised canine testicle
and ovary samples. These methods were able to successfully find impedance spectra features for the investigated
biological tissues. The best predictive accuracy was with Boruta feature extraction and a Random Forest classifier
but without significantly reducing the number of features in the classifier model. The proposed method was able
to reduce the number of features in the model to an average of 5.8 features for all tested classifiers. These meth-
ods may have use in finding features to discriminate other tissue types, possibly to aid in targeting lesions in min-
imally invasive cancer treatment surgeries.

1. Introduction

Stereotactic surgeries describe a minimally invasive procedure that
is used to locate a target inside the body. These procedures have
evolved since their original development in 1951 [1]. Broadly speak-
ing, stereotactic surgery involves a rigid frame connected to the patient
to position surgical tools and an imaging method to localise the target.
The methodology has been used for radio-neurosurgery [1], brain stim-
ulation for treating psychiatric illness [5] and needle based breast can-
cer biopsy [22], among others.

Stereotactic breast biopsy is one of the leading surgical techniques
used to diagnose breast cancer. X-ray or CT imaging is typically used to
mark the location of suspicious lesions, such that the biopsy needle can
be placed accordingly. For real-time guidance, ultrasound imaging is
used in some procedures to localise the tools and locate suspect lesions.
However, it is well-recognised that ultrasound imaging is not always re-
liable, and can result in inaccurate needle placement. This can lead to
multiple biopsy cores required for pathology assessment as the tissue
captured from one needle is appreciably small and may not contain sig-

nificant amount of the target lesion. There has been a growing interest
in developing new technologies and methods that can supplement the
current biopsy procedures including better needle path planning, imag-
ing, and embedding sensors on the needles. Other needle based proce-
dures, such as prostate brachytherapy [20] and percutaneous nep-
hrolithotomy [21] are also heavily dependent on tool placement and
could also benefit from similar improvements.

To supplement the current imaging methods and procedures, innov-
ative improvements to the surgical tools have been attempted that can
sense the properties of nearby tissue. Notably, force sensors installed on
surgical needles have been used to sense the change in stiffness between
healthy tissue and cancerous tumours [24]. There has also been a grow-
ing interest in using electric impedance sensing needles, to monitor
changes in the tissue impedance at the needle tip [13]. Studies have
shown that carcinoma of the breast, healthy connective tissue, and adi-
pose tissue, have distinct dielectric features [2,10]. The method known
as electric impedance spectroscopy (EIS) is the analysis of the electric
impedance at different stimulus frequencies. There have been several
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attempts at incorporating electrodes into biopsy needles [11,26] to per-
form EIS.

To be able to perform EIS, two or more electrodes are required. Two
commonly used arrangements are bipolar and tetrapolar: two and four
electrodes respectively. In a bipolar arrangement, for example, voltage
can be applied across the electrodes and the current measured in line. A
tetrapolar arrangement may have the current injected across one elec-
trode pair and the voltage measured across a the other pair. Both con-
figurations have been used in the development electric impedance sens-
ing surgical needles.

As seen in [10], landmark impedance features for differentiating
carcinoma from healthy tissue can be seen at near direct-current and at
125 kHz. Similar landmark features can be seen in other organs, such as
the prostate, where it has been reported that cancer could be discrimi-
nated against benign tissues by observing the permittivity component
of the impedance at 100 kHz [7]. Other developments include a feature
extraction method for impedance spectroscopy data using the informa-
tion theoretic criterion [25] and single-layer feed-forward neural net-
works [3,9].

With the ability to sense the electric impedance at the tip of a biopsy
needle, it is possible to classify the tissue while performing stereotactic
surgery using the EIS data. This improvement to the procedure may re-
duce the number of required biopsy samples, as the surgeon can be noti-
fied prior to extraction if the needle is inside the lesion. The techniques
proposed may also be valid for other tissues that are valid for stereotac-
tic surgery, including the liver, brain, and lung, provided that the target
lesion has different electric impedance than the surrounding tissue.

The mechanisms behind the electric impedance of tissues has been
long studied, and is not trivial. As the frequency of the electric stimulus
changes, the impedance is known to change. These changes in tissue
impedance are often described as being tied to the so-called α, β and γ
dispersions, and are seen in the approximate ranges of 1 Hz to several
kHz, 1 kHz to several MHz, and upwards of 1 GHz respectively. While it
may seem desirable to measure the impedance at multiple frequencies
to have a better understanding of the tissue's behaviour, this luxury
may not be feasible in real-time applications such as stereotatic surgery.
One then may argue to focus purely on the high frequency measure-
ments, but there may be impedance features at lower frequencies that
can be more helpful in discriminating between two tissue classes. The
question then becomes how to identify the critical landmark features
that should be used for tissue classification.

There are multiple methods to extract critical features from a data
set [18]. The forward stepwise and backward stepwise methods are
popular for regression model development as they are relatively simple
to implement. In forward stepwise analysis, one would typically start
with a null model; a model with no predictors. Each of the measured
features are added individually to the null model, and the classification
accuracy is tested. The most successful feature is then used in the next
iteration of the model and the process continues. Metrics such as coeffi-
cient of determination, coefficient of variation, and Bayesian informa-
tion criterion are often used to consider when predictors should stop be-
ing added.

One of the issues with these types of greedy approaches is the lim-
ited number of model solutions considered. There may exist another
model that with the correct combination of features, would present a
better solution, but is not considered due to an earlier decision in the
model building process. For example, there may be certain features
that, on their own, are not effective classification features but when
combined with other features, result in a more powerful model. In other
words, the method may progress down a path that does not achieve the
global best classifier. Furthermore, should two or more features im-
prove the model equally, there needs to be some criteria to select be-
tween them. To this end, a more stochastic approach to model building
could be used to consider a more diverse set of models.

One could consider that the wrapper approach to the feature extrac-
tion problem called Boruta [17] would fall in this category. In Boruta,
the goal is to find which features in a data set are relevant. The algo-
rithm uses the Random Forest classifier to develop an importance met-
ric alongside the so-called “shadow” features; an existing feature in the
data set that has been randomly reorganised. With this combination,
the method is able to determine which features are deemed as impor-
tant to the classification problem. In some research papers, Boruta has
performed the best when compared to other Random Forest based fea-
ture selection methods [16]. While Boruta has been criticised for its
computational complexity, recent updates to the algorithm have less-
ened this concern for some data sets [8]. Nevertheless, as a heuristic al-
gorithm, this method comes with the associated drawbacks of such
methods.

The unique contribution presented in this paper is the investigation
on how to define features for ex-vivo tissue classification by comparing
different classifiers and feature extraction methods. This analysis in-
cludes a novel algorithm where a model is constructed from a null base
model and additional features are added as they improve classification
accuracy. To overcome indecisiveness in which feature to add, a scoring
criteria based on the training data statistics is incorporated.

The paper is structured by first introducing the new feature selec-
tion method and algorithm. These methods are tested on EIS electric
impedance data for a variety of tissues: 132 samples across 6 different
tissues, measured at 23 frequencies. Tissues measured include bovine
kidney, liver and muscle, poultry liver, and canine testicle, and ovary
samples. The results of the paper first present the predictive accuracy of
the model with all features, then that of the models with the feature ex-
traction techniques. The paper then concludes with a discussion of the
results, suggested improvements, and future work.

2. Materials and methods

2.1. Proposed modified forward stepwise method

2.1.1. Data primer
The method proposed in this paper is developed to address a contin-

uous value multivariate classification problem. As many classifiers are
built upon the notion of basing future probability on previous measure-
ments, the training data for a measured feature should be similar to
other measurements. To this end, the data should be normally distrib-
uted. The Shapiro-Wilk test [23] can be used to determine if the data for
all samples are normally distributed. The test involves calculating the
statistic W,

(1)

where q(u) is the uth order statistic. The coefficients au are determined
through,

(2)

where σ is the covariance matrix, m are the expected values of the order
statistics sampled from the standard normal distribution.

Provided that the measurements in the training data set follow a
Gaussian distribution, many classification algorithms become available
to use.

2.1.2. Proposed feature scoring method
Considering a two class classification problem, it is desirable that

the numerical features have distinctly separate values. In many applica-
tions a feature x may share similar values between two classes. To
quantify the severity of shared values, the overlapping index [19] η be-
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tween these two arbitrary classes c1 and c2 can be determined, see Fig.
5. The overlapping index is evaluated by computing the area under-
neath the intersection of the probability density functions for these
classes [19],

(3)

As these are probability density functions, the area under either
curve will sum to unity. Thus 0 ≤ η ≤ 1, where a value of 0 would indi-
cate that these features have no overlap in values, and 1 indicates iden-
tical values between the two classes.

However, the overlapping index on its own is not sufficient. As seen
in Fig. 5, two classes may have a small overlap value, due to a large
standard deviation σ of the data for the feature of that class. To quantify
the spread of data about the mean value μ, the coefficient of variation v
for ith feature for the jth class can be calculated,

(4)

Smaller values of v indicate that the data is more closely gathered
about the mean, which would suggest that future measurements would
also be near the mean value.

To then quantify how likely one is able to discern between the ith
feature of two arbitrary classes, a novel scoring metric SC can be used,

(5)

Ultimately, SC can be used to gauge how similar a feature is be-
tween two classes. A smaller value of SC indicates low similarity be-
tween the classes at the feature.

2.1.3. Algorithm to Extract Features
The objective in developing the classification model is to maximise

prediction accuracy with only as many predictors are needed. Addi-
tional predictors in the model may be redundant, which would increase
measurement time, or possibly harm predictive accuracy [6]. In the de-
velopment of models with a high number of features, it is not realistic to
perform an exhaustive search of all possible predictor combinations, as
it is computationally expensive. Researchers often turn toward forward
stepwise analysis for constructing their classifier [6].

To address some of these limitations, this paper develops a method
inspired by the popular forward stepwise analysis method, where indi-
vidual features are initially used and additional features are added if
they improve classification accuracy.

A modification to the forward stepwise analysis is proposed here,
where a statistical analysis of the data is used to guide the method to-
wards a better performing classifier. These candidate features are se-
lected through investigating normality tests, calculating the tissue vari-
ance, evaluating the standard deviation of the tissue samples, and dis-
tribution overlap evaluations.

With the null base model created, the predictive accuracy of this
model should be determined with each feature added to the model. This
should be accomplished by training the classifier with the training data
set, then predicting the classes of a validation data set, and recording
the number of true positives and incorrect classifications.

Algorithm 1: Modified Forward Stepwise Analysis to Extract Fea-
tures

The iterative portion of the algorithm is then implemented, where
an additional feature is added to the previous iteration's model and test-
ing the model's accuracy, until a stopping criteria is met. These stopping
criteria are at the discretion of the programmer and could be as simple
as the number of desired features in the model, a decrease in prediction
accuracy through an iteration, or involve an over-fitting penalty func-
tion threshold.

In the event that two or more features would equally improve the
predictive accuracy of the mod-el, the scoring criteria in (5) is used. The
feature with the smallest score should suggest a feature that, relatively
speaking, would most reliably improve the model.

Pseudocode for this algorithm is provided in Algorithm 1. As an ex-
ample, one iteration of the algorithm is illustrated in Fig. 6, where a fea-
ture is added to the model based on its score value.

In this study, the proposed forward stepwise algorithm (Modified)
described in Algorithm 1 was implemented in Python 3.8.5. The stop-
ping criteria were set to add features until the next iteration model
would have the classification accuracy that would decrease the model
performance, or a maximum of 7 features had been added to the model.

2.2. Classifier & feature extraction methods

The sequential feature selection method was implemented using
scikit-learn 0.24, with the stopping criteria set to extract 7 features. The
Boruta feature selection method was provided by Daniel Homola in the
boruta_py Github repository [8]. [17]. The Boruta algorithm was config-
ured to automatically determine the number of estimators, a verbosity
of 2, and the Random Forest classifier within the algorithm was set to
use balanced class weights and a maximum tree depth of 5.

2.3. Classification methods

Several classification methods could be utilised for this application,
including quadratic discriminant analysis (QDA), support vector ma-
chine classifier (SVM), k-nearest neighbours (kNN), Naive Bayes (NB),
and Random Forest (RF) [4,15,27]. Each of these classifiers will be used
in this study to have a deeper understanding of the potential of tissue
classification from electric impedance data, as well as a comparison of
the feature extraction methods.

For this study, the QDA classifier, NB classifier, and the SVM classi-
fier were configured to the default values from scikit-learn 0.24.2. The k-
Nearest Neighbours (kNN) classifier was set up to consider 3 neigh-
bours, with uniform weights, and to use standard Euclidean distance as
the metric. The Random Forest (RF) classifier used 10 estimators, with
bootstrapping enabled. The remaining parameters for the kNN and RF
classifiers were left as the default values from scikit-learn 0.24.2.

Data was collected for 9 runs for each feature selection method and
classifier pairing.

3. Results

The results of this paper are split into two stages. The first stage of
results presents the gathered EIS data from the tissues. The second set of
results compares the predictive accuracy from the different feature se-
lection and classification methods (see Fig. 1).

3.1. Tissue measurement

A modified brachytherapy needle developed in [12] uses a bipolar
electrode arrangement in combination with the an impedance spec-
troscopy analyzer (Quadra from Eliko, Tallin, Estonia) to measure the
tissue electric impedance at the tip, refer to Fig. 2. The investigated or-
gans include.

● 22 samples of ex-vivo poultry liver;
● 22 samples of ex-vivo bovine liver;
● 22 samples of ex-vivo bovine kidney;
● 22 samples of ex-vivo bovine muscle;
● 22 samples of freshly excised canine testicle;
● 22 samples of freshly excised canine ovary;

3
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Fig. 1. Experimental setup for measuring the tissue samples. The impedance
spectroscopy analyzer was connected to a coaxial bipolar electrode embedded
needle.

Fig. 2. CAD model of a bipolar electrode arrangement electrode embedded
needle. The two electrodes are the coaxial core electrode and the needle shaft
and are separated by polytetrafluoroethylene (PTFE). A sinusoidal voltage of
frequency ω is applied across the electrodes and the current is measured inline.
With the frequency, current, and voltage known the impedance Z(ω) can be de-
termined. Image from [12], reused with permission.

The organs were trimmed of connective tissue and fat where applic-
able. The canine organs were measured at a local veterinarian hospital
that were conducting scheduled spay and neuter surgeries. These ovary
and testicle samples were measured immediately following excision
during surgery. The poultry liver, bovine liver, bovine kidney and
bovine muscle were purchased from a local butcher, where they were
refrigerated below −4 °C. The samples were kept refrigerated until they
were segmented into pieces and trimmed of unwanted connected tissue.
The kidney samples were cut to expose the cross section of each lobe.
The needle probe was inserted into the renal cortex for all kidney sam-
ples, see Fig. 3. For the bovine muscle, the meat was cubed into approx-
imately 2 cm samples. The needle probe was inserted parallel with the
direction of the muscle fibres. Remaining strands of fat in the samples
were avoided during insertion. All tissue samples were recorded at
20 °C room temperature and the same needle probe was used for all

measurements. The needle probe was cleaned and sanitised between
each use.

The impedance spectroscopy device was groun-ded with the alu-
minium tray that the tissue samples would be placed on during mea-
surements. At a single frequency, the impedance magnitude and phase
were measured 10 times and averaged. The impedance was measured
following a 4.2 V excitation signal at the following frequencies in Hz,

With the current data available there are 2 N variables available for
classification: magnitude and phase at N frequencies.

In total, across the tissue types, 132 samples were measured. The
measured impedance for each tissue was inspected for outlier or noisy
data. Ultimately, one sample from each type was discarded, resulting in
126 samples used in the experiments.

3.1.1. Data preparation & analysis
The measurement samples were separated into three categories:

test, train and validation. The data was initially partitioned with a 70/
30% split for test and training data. The training data was further split
into a validation data set, also using a 70/30% split. The split-training
and validation data sets are used with the feature extraction method.
After the feature extraction, the training and validation data sets are
then combined to train the classifier to be used on the test data.

The average impedance for some of these samples are shown in Fig.
4. It is observed that the average impedance for these tissues indeed dif-
fer, and could potentially be used for classification. It is evident that the
measurements for any of the presented tissues contain variation in the
impedance across the samples along the frequency spectrum. The ques-
tion is then raised if there is a way to determine key features as others
have seen in [7,10], such that measurements need only be taken at
these frequencies without compromising, or potentially improving,
classification accuracy. This is the objective of the feature selection
study.

3.2. Feature observations in EIS data

The results of the Shaprio-Wilk test confirmed that all sample mea-
surements were normally distributed.

The variance across all samples for all tissues revealed that the
greatest variance occurs at 10.42 Hz for the magnitude and at 114 Hz
for the phase. For both magnitude and phase, the variance was smallest
at 349 kHz, the highest measured frequency.

The standard deviation for all tissues revealed that the smallest de-
viation in the magnitude occurs at 349 kHz. The phase showed similar
results for muscle, ovaries and testes, but the bovine liver, poultry liver
and bovine kidney had the smallest standard deviation in the range of
1700–3100 Hz.

The probability density function for each tissue is constructed at all
features. It was desired to find where there was minimal overlap in val-
ues for all tissues. Using any two functions the area can be estimated
through integration, see Fig. 5. Analysis of the overlap metric for all tis-
sue combinations reveals there was no single feature that is distinctly
unique for all tissues. There are, however, some features with low over-
lap for multiple tissues, such as the magnitude at 349 kHz in Fig. 5.

The above metrics do not reveal a clear feature (or combination
thereof) that should be automatically included in any of the classifier
models. The analysis does reveal that there are features that are more
likely to be seen in new samples. Namely, the highest measured fre-
quency features have the lowest standard deviation, suggesting future
test samples would yield similar values, thus making them reliable pre-
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Fig. 3. (a) Preparation of the bovine kidney samples. The kidney was sectioned into 22 pieces and placed on an aluminium tray. The needle was inserted into the
same location across the other samples. The other ex-vivo tissue samples received similar preparation. (b) Examples of the freshly excised tissue collected during
data collection. From left to right, ovary, ovarian cyst, testicle.

Fig. 4. The average electric impedance for 15 samples of 4 tissues in the data-
base training set with standard deviation.

dictors. Regardless, in this study all models started without any fea-
tures.

3.3. Classification & performance

The collected EIS data was then used with the methods to determine
the most effective combination. The Boruta, SFS, and proposed Modi-
fied feature extraction methods were used to construct models for the

classifiers. The average accuracy from 9 runs for each classifier and fea-
ture selection method is presented in Table 1. The average number of
extracted features from each of the selection methods are listed in Table
2. The average most precise combination found with this study was
Boruta feature extraction with a Random Forest classifier at 90%. How-
ever, the single best run performance was found to be 97% using a sup-
port vector machine classifier and the proposed Modified method. In-
terestingly, this model was built with 6 features representing only the
phase information of the impedance. However, as shown by the stan-
dard deviation across all of the selection methods, the SVM classifiers
had volatile swings in predictive accuracy across the different runs. De-
spite this, the Modified method had on average better performance
with the SVM classifier than the other selection methods.

The Modified method and SFS had relatively comparable perfor-
mance in predictive accuracy. Both of these methods outperformed
Boruta with all classifiers except with the Random Forest classifier.

Illustrated in Fig. 7 are the samples in the training data set where
some clustering can be seen for several classes at the features shown.
The Boruta feature selection typically selected all, or all but one, feature
as significant. As a result, there is little difference in using all features
and using the Boruta models. With the SFS method, its stopping criteria
was set to provide 7 features, so all models were built with this criteria.
The proposed Modified method provided the least amount of features.

As a comparison, a model with all features and a model generated
with the proposed Modified method were used with a SVM classifier
and are shown in Fig. 8. It is evident that using the model with fewer
features improved the predictive accuracy of the classifier.

4. Discussion & conclusion

This paper presented different feature extraction methods and clas-
sifiers to use with electric impedance spectra for ex-vivo tissue classifi-
cation. The experiments in this paper investigate three feature selection
techniques and five different classification methods. The results of the
experiments suggest that for most of the classifiers used, the predictive
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Fig. 5. (a) Distribution of the impedance phase at 1100 Hz feature, where
there is significant overlap in the tissues, which would discourage its use in the
classifier model. (b) The magnitude at 349 kHz feature illustrates a scenario
where there is still a significant amount of overlap in some of the tissues, but
there are distinct regions for some tissues, suggesting that is could be a possible
inclusion in the classifier model. (c) Quantifying the overlap between the dis-
tributions of two tissues with similar values. (d) A smaller overlap indicates
that the tissues are less likely to share a similar value.

accuracy increased on average when using a reduced number of fea-
tures in the model.

While the performance of SFS and the proposed Modified method
were comparable, the results of this study highlight its effectiveness in
reducing the number of features needed to obtain similar predictive ac-
curacy. Reducing the number of frequencies to measure the electric im-
pedance is useful in developing these sensor embedded surgical tools
for real-time tissue classification. Focusing solely on the predictive ac-
curacy, it was seen in this study that the RF classifier performed the
best, even with a large number of features in the model. Another advan-
tage of the RF classifier is that it was the most consistent across the runs
and classifiers, as shown by the small standard deviation. By compari-
son, the SVM classifier was the least consistent across all the classifiers
and runs.

In this study the classification models were built using the measured
impedance directly from the EIS device. Another approach to consider
is to fit the measurements to an equivalent circuit model and using the
estimated impedance from the circuit model at specific frequencies, or
using the circuit element values (resistance, capacitance, etc.) similar to
the work in [14].

Improvements could be made to the method proposed in this paper
to further increase its performance. The similarity scoring metric could
incorporate the skew of the training data, or replace the overlapping in-
dex with the probability Jaccard. Accounting for collinearity in features
could be a useful addition to the method and remove redundant fea-
tures being added to the model.

It should be stated that there are limitations to this study. Notably,
with the tissue sample measurements split into the test and training
data sets, there was a limited amount of data to build the model from. It
is expected that having a larger number of samples for each tissue
would improve the robustness when building the model, and having a
larger test data set would reinforce, or possibly refute in the case of over
fitting, the effectiveness of the classifier. Furthermore, it would be
worthwhile to investigate a larger variety of tissues than those men-
tioned in this paper. The EIS measurements of cancerous and healthy
tissues are of particular interest in determining if there are any specific
frequencies of where it is easiest to differentiate the tissues by electric
impedance.

Lastly, one might expect that there could be different performance
of the classifiers by altering the parameters from those selected in the
study. For example, changing the number of neighbours to consider in
the kNN classifier, or a different kernel function in the SVM classifier.

Beyond the scope of this study, the proposed feature extraction
method may be applicable to other continuous multivariate classifica-
tion problems. It may be worthwhile to investigate the applicability of
this relatively simple feature extraction.
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Fig. 6. The first iteration of the modified forward stepwise method illustrated with the EIS data. Each of the remaining features are added to base model separately,
and the true positives classifications are evaluated. This iteration revealed that there were three features that would improve the model by the same amount. A
closer inspection of the classification results is needed to determine which of the three features should be added. For a given feature, the worst classification pair is
selected, to see if it can be improved. The overlap η between these features and the corresponding v are calculated. The score is calculated using (5). The feature
with the lowest score will be added to the model. In this example f46, the impedance phase at 349 kHz, is added to the next iteration of the model. This feature is
removed from the remaining features, and the process repeats until the stopping criteria is met.

Table 1
Feature extraction method & classifier accuracy.

All Boruta SFS Modified

QDA 43 ± 12 44 ± 10 85 ± 6 86 ± 6
NB 80 ± 6 85 ± 4 88 ± 5 86 ± 7
kNN 80 ± 6 75 ± 4 77 ± 7 76 ± 6
SVM 56 ± 12 58 ± 11 59 ± 14 68 ± 15
RF 84 ± 5 90 ± 4 78 ± 6 81 ± 3

Table 2
Average number of extracted features.

All Boruta SFS Modified

46 45 7 5.8

Fig. 7. A scatter plot showcasing three of the six extracted features of the
training data in a model built with the Modified method and a QDA classifier.
Clusters for some of the tissues are distinctly evident, suggesting that these
features could be used to discriminate the tissues.

recherches en sciences humaines du Canada (CRSH), [numéro de
référence NFRFE-2018-01986].
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Fig. 8. (a) A confusion matrix of a test data set using the SVM classifier with the all features in the model. (b) A confusion matrix of another test data set using
the SVM classifier with a 6-feature model built with the proposed Modified method. The classifier was able to correctly identify most samples, showing drastic im-
provement when using select features over all features.
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