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Abstract— In this paper, a novel optimization method named
reference point-based particle sub-swarm optimization (RPB-
PSWO) is presented. RPB-PSWO utilizes the particle position
update method of PSO and with the non-dominance and
diversity selection methods of NSGA-II. The multi-objective
optimizer utilizes a reference point-based system to allocate
particles into an equidistant sub-swarm, in which particles
are attracted to a pareto optimal solution in that sub-swarm.
To encourage diversity and avoid local minima, density and
turbulence factors are included. RPB-PSWO is capable of
optimizing problems with many dependent variables, as the
position update method of PSO inherently preserves dependent
relationships, but suffers from an increased computation cost
compared to NSGA-II. The proposed algorithm, although
less computationally efficient, is capable of creating diverse
pareto front solutions for standardized and custom optimization
problems.

I. INTRODUCTION

Optimization is implemented in various facets of modern
engineering design, with the focus on minimizing cost,
weight, time, etc. In 1998, Altshuler et al. were the first to
optimize an antenna configuration by means of the genetic
algorithm developed in the 1960’s by John Holland [1], [2].
The optimization process randomly altered a set of design
variables known as a gene, and swapped values between
genes, mimicking evolution. Since the development of the
genetic algorithm, new methods such as Particle Swarm
Optimization (PSO) [3] and Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [4] have been created.

PSO was designed as a mono-objective optimization solver
by Kennedy et al. in 1995, and proved effective for a plethora
of optimization problems as explored by Shi et al. [3],
[5], [6]. Further segmentation of the particle swarm, known
as sub-swarms, was designed for multi-modal functions, in
which the sub-swarms compete for dominance in local and
global solutions [7]. NSGA-II is a multi-objective optimizer
based on the genetic algorithm, in which the parent genera-
tion is selected based on pareto dominance and diversity [4].
Difficulties arises when objective functions rely on dependent
decision variables. The random nature of genetic algorithms
(NSGA-II) does not conserve the relationship found between
the dependent variables, where the inherent nature of PSO
does. To alleviate this issue, the multi-objective benefits
of NSGA-II and position update methods of PSO can be
combined to create a strong multi-objective optimization
method.
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Multi-objective particle swarm optimization algorithms
have been extensively explored. Coelle et al. developed a
Multi-Objective PSO (MOPSO) in which the particles are
attracted to the best solution in the hyper-cube (i.e. a sub-
swarm) it occupies, allowing for a pareto front to be de-
veloped [8]. Sub-swarms are groups of candidates solutions
attracted to the closest non-dominated solutions, conducting
a local search around the non-dominated solution. When
compared to hybrid multi-objective evolution algorithms,
MOPSO performed better for problems with a large amount
of decision variables [9]. Speed constrained Multi-objective
PSO presented by [10] extends on MOPSO by applying a
speed limitation to the particles in the swarm based on a
constriction coefficient, to force the particle swarm to con-
duct a local search while traveling throughout the decision
space. The introduction of turbulence and sub-swarms further
improved MOPSO [8], [9]. A turbulence factor randomly
alters the particles position in order to avoid local minima
and encourage diversity [9], [11].

Multi-objective PSO’s have been developed with tools
to aid convergence and diversity, such as reference points.
Where Allmendinger et al., developed a reference point-
based particle swarm optimizer that requires the decision
maker to select one or many desired solutions (reference
points) in the objective space [12]. The method adjusts one
particle’s position per iteration and analyzes its dominance
against the particles previous and swarms global best posi-
tions. In the case where all three solutions are non-dominated
the two closest to the reference point are selected, generating
a localized pareto front. In [13], Figueiredo et al. developed
a many objective PSO based on equidistant reference points
to encourage diversity. The swarm is separated into two sub-
swarms, the first focuses on identifying extreme solutions
while the other focuses on convergence and swarm diversity.
To identify all extreme solutions the first sub-swarm is
further broken down into small sub-swarms equal to the
number of objective functions.

In this paper, a novel optimization method is described,
using the NSGA-III reference point distribution by [14] to
equally distribute sub-swarms of particles over the objective
space. The results of the proposed method, called Refer-
ence Point-Based Particle Sub-Swarm Optimization, (RPB-
PSWO) is capable of quickly achieving diverse global pareto
fronts for various multi-objective optimization problems. The
algorithm is compared with NSGA-II by analyzing the Zit-
zler–Deb–Thiele (ZDT) test set and a real world optimization
problem, in which an actuator for an ankle foot orthosis is
optimized for size, power, and total motor range utilization.

The paper is structured as follows: Section II describes the
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implemented portions of NSGA-II, section III demonstrates
the workings of the mono-objective PSO, the novel RPB-
PSWO method is proposed in section IV , section V outlines
the comparison between NSGA-II and RPB-PSWO on a
standardized test, section VI applies RPB-PSWO and NSGA-
II to an optimization problem with dependant variables, and
finally section VII concludes and states future work.

II. NON-DOMINATED SORTING-BASED GENETIC
ALGORITHM II

NSGA-II is a multi-objective optimizer that was devel-
oped to ensure the preservation of non-dominated solutions
and diversity, by implementing non-dominated sorting and
crowding distance methods, respectively [4].

Non-dominated sorting is the process of separating each
attribute in the population to a non-dominated front. Solution
~x1 ∈ Popt dominates ~x2 ∈ Popt if all the objective values
for ~x1 is equal or better than ~x2, and ~x1 is better than ~x2 in
at least one objective [9]. NSGA-II non-dominated sorting
assigns each attribute to a respective pareto front, in which
front 1 contains all the globally non-dominated solutions.
Elarbi et al., proposed a reference point-based dominance in
which each attribute in a population is assigned to an equally
distributed point on a hyper-plane [15]. The attributes are
assigned to the reference point with the minimal distance
between the normalized solution and reference point direc-
tional vector. The number of reference points in the objective
space (CountRP ) is presented as a binomial coefficient as:

CountRP =

(
n+ d− 1

d

)
(1)

where n is the number of objectives and d is the number of
divisions between two objectives [14].

Crowding distance analyzes the space between the nor-
malized objective values, as described in [4]. The solutions
with the highest crowding distance are selected to be in
the parent population to preserve pareto front diversity. This
paper intends to implement the inherent strengths of NSGA-
II to create a multi-objective PSO.

III. PARTICLE SWARM OPTIMIZATION

PSO was inspired by the social psychology of schooling
fish and flocking birds and is a computationally inexpensive
optimizer in mono-objective problems [3], [16]. Consider n
particles, analogous to n fish or birds, that have their own
position and velocity in the k-dimensional decision space
denoted ~pi and ~vi, respectively. Let:

i =
{
1, 2, · · · , n− 1, n

}
be the index of the a single particle, in which the position
of the particle in the decision space is:

~pi =
{
x1, x2, · · · , xk−1, xk

}
The values x1 and xk correspond to a position of the particle
in the 1st and kth dimension, respectively. Where:

~vi =
{
v1, v2, · · · , vk−1, vk

}

is the velocity of the particle in the decision space, updated
at each iteration using:

~vi = w · ~vi + c1r1(~ppbest
− ~pi) + c2r2(~pgbest − ~pi). (2)

Positions ~ppbest
and ~pgbest are the best solutions for the

individual particle (personal) and whole swarm (global),
respectively. Scalars r1 and r2 are random numbers in R ∈
[0, 1], and c1, c2, and w are set scalar values [5], [6]. The
inertial weight (w) of the particle allows the range of the
search space to be altered; a larger w promotes exploration,
where a smaller value focuses on local exploitation [6]. The
cognitive factor (c1) and social factor (c2) are known as
acceleration constraints, where scalars r1 and r2 randomly
adjust the social and cognitive effects, altering the particles
velocity to reach the pbest and gbest solutions [5]. To limit the
speed of the particles over the decision space, a maximum
velocity (Vmax) constraint is applied to the system. The
constraint forces the particle to conduct a local search as
it travels through the search space [5]. The Vmax values are
calculated as

Vmax = ρ · (max(~p(:, :))−min(~p(:, :))) (3)

determining a unique maximum velocity for each dimension
in the objective space. In (3), ρ ∈ [0, 1] is a user selected
scalar with the Vmax constraint being applied to each parti-
cles velocity as follows

Vik =

{
Vik = Vmax · sign(Vik) if |Vik| > Vmax

Vik otherwise
. (4)

With the velocity evaluated and bounded the updated particle
position becomes

~xi = ~xi + ~vi (5)

in which the velocity is treated as the changed in particle
position per iteration of the PSO algorithm. Once computed
the objective function is evaluated and the gBest and pBest

solutions are updated. The process is then repeated for a
set number of iterations or until an acceptable solution is
achieved.

PSO inherently preserves the relationships between the
dependant variables during each iteration, as the new position
of the particle is based on the best solutions in which the
same dependencies are already present. The incorporation of
the PSO particle position manipulation into a strong multi-
objective optimization method could improve the optimiza-
tion performance of highly dependant problems.

IV. REFERENCE POINT-BASED PARTICLE SUB-SWARM
OPTIMIZATION

The proposed RPB-PSWO method uses the reference point
distribution and assignment method suggested in [14], the
non-dominated sorting and crowding distance methods from
[4], with the particle sub-swarm technique described in [9].
To start, a set of y reference points are equally distributed
about the normalized k-dimensional hyper plane (See. (1)).
An initial particle swarm is randomly distributed across the
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Fig. 1. Reference Point Assignment: In which δ is calculated Euclidean
distance between each solution and each reference point. A total of 4 divison
resulted in the 5 reference points between the objectives.

decision space and the objective functions evaluated. Each
particle is then assigned to the closest reference point based
on the lowest Euclidean distance between its normalized
objective solution and the distributed reference points, as
shown in Fig. 1, where each reference point now presents
a particle sub-swarm.

In order to evaluate the PSO iteration, the values of pBest

and gBest must be obtained. The pBest of each particle
is updated upon each iteration by comparing each of the
objectives to the particles previous best value, resulting
in n pBest options, where n is the number of objective
functions. To find the gBest solution for each sub-swarm,
non-dominated sorting is conducted over the whole swarm,
and the one or more gBest particles located on the best
pareto front for that sub-swarm are selected. If no non-
dominated solutions are identified, the sub-swarm particle
with the smallest distance to the origin in the objective space
is used.

To evaluate the PSO algorithm described in Section III,
pBest is randomly selected from the particles n best solutions
for each objective function, and gBest is the pareto optimal
solution in the sub-swarm the particle belongs to. When mul-
tiple pareto optimal solutions are present in the sub-swarm,
the optimal solution with the lowest Euclidean distance to the
particles previous position in the objective space is chosen.
An additional density factor is introduced to encourage
swarm diversity and populate the pareto front. The density
factor replaces the gBest solution of a particle with the gBest

solution of the lowest populous reference point (gBest−div)
for the current iteration. The method is implemented as
follows. First, a gBest solution is retrieved from the lowest
populous reference point to become gBest−div , followed by
the gBest evaluation for each particle determined by:

gBest(k) =

{
gBest−div if R < Dp

gBest(k) otherwise
(6)

where R ∈ [0, 1] is a random number and Dp ∈ [0, 1] is the
selected density probability. With the pbest and gbest selected
for each particle, the velocity and position of each particle
can be calculated according to (2) and (5).

Finally, turbulence can be implemented into the swarm
to allow small changes of the decision variables within the
particles, similar to that of NSGA-II mutation. Turbulence is
implemented as follows:

xi(k) =

{
xi(k) + β(k)xi(k) if R(k) < Tp

xi(k) otherwise
(7)

where β ∈ [0, Tf ] and R ∈ [0, 1] are vectors of k random
numbers, Tf and Tp ∈ [0, 1] are the turbulence scalar
and probability, respectively. Once the turbulence has been
applied to the swarm the multi-objective functions can be
evaluated.

The inherent nature of PSO enforces continuous move-
ment of the particle. Therefore, if a pareto optimal solution
is identified, the result and position of the particle must be
stored in an archive for each reference point, preserving the
identified pareto front. Upon evaluation of the next iteration,
the archived solutions are re-evaluated for non-dominance.
In the case an archived solution is dominated it is removed.
A size limit (RPsave) is imposed on the archive to minimize
the computational time for non-dominated sorting and gBest

selection [9]. If the number of non-dominated solutions ex-
ceeds RPsave for the sub-swarm, the most diverse solutions
are selected based on NSGA-II crowding distance. Using
crowding distance in multi-objective PSO has been validated
by numerous authors [11], [17].

The introduction of reference point-based particle swarms,
non-dominated sorting and crowding distance created a
unique method of selecting the gbest solution for Multi-
objective PSO. The inclusion of reference points, a pareto
archive, density, and turbulence factors allows the new multi-
objective optimizer to achieve diverse pareto fronts while
maintaining the relationship between dependent variables.

Since the initial submission of this work, Sharma et al.
[18] published a similar multi-objective PSO by combining
NSGA-III with PSO; in which particles are assigned to
reference lines (from the origin of the objective space to
each reference point), instead of the proposed reference
points. The gbest selection criteria is similar in which the
non-dominated solution for each reference line is used. The
density factor presented in this paper, is replaced with the
niche count of each reference line. The implementation of
turbulence in the work is not present, however, the gbest
solution of [18] undergoes evolutionary search in which
crossover and mutation is conducted.

V. OPTIMIZER EVALUATION AND COMPARISON

To compare RPB-PSWO with the well known NSGA-II,
three metrics are used: the convergence for a set number
of iterations, pareto diversity by means of Hyper Volume
(HV), and computational time per iteration. All computations
were conducted in MATLAB on a dedicated computer (Intel
Core i5-7200U CPU, 16 GB DDR4 RAM). The respective
control parameters of each optimizer is shown in Table I,
where NSGA-II encompassed polynomial mutation with a
distribution index of 20 and parent tournament selection of
size 2.

2908

Authorized licensed use limited to: Carleton University. Downloaded on March 29,2022 at 13:12:18 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
OPTIMIZER PARAMETERS

NSGA RPB-PSWO
Parameter Value Parameter Value

Population Size 100 Swarm Size 100
Mutation Rate 0.8 c1 2
Crossover Rate 0.8 c2 2

w ∈ [0, α] α ∈ [0, 0.8]
RPsave 10
Tp 0.4
Tf decreasing ∈ [0.2, 0]
Dp 0.1

Fig. 2. Convergence of the f2(x) for each ZDT function, upon a
logarithmic x-axis.

Five ZDT tests were conducted (1, 2, 3, 4, 6). Nine divi-
sions (d of (1)) were selected between objectives for RPB-
PSWO, creating 10 reference points for the two-dimensional
objective space to allow the the final number of archived
points for RPB-PSWO and NSGA-II child population size to
be equal. The resulting pareto front and convergence of 5000
iterations are presented in Fig. 2 and 3, where the average
iteration time and final HV is presented in Table II, and the
percent HV is with respect to the point [1, 1] in the objective
space.

The ZDT test convergence and pareto fronts (see. Fig 2
and 3) demonstrate that RPB-PSWO is a comparable algo-
rithm to NSGA-II. The convergence of RPB-PSWO exhibits
a stair-casing effect, as a new solution can be significantly
better than the previous, therefore dominating for longer

Fig. 3. Pareto Fronts of Respective ZDT Tests: For visualization purposes
the value of f2(x) for NSGA-II is shift up by a value of 1.

period of time. NSGA-II converges at a uniform rate, but
requires additional iterations to reach the optimal solution.
The convergence rate of both NSGA-II and RPB-PSWO can
be further optimized; changing the crossover and mutation
probability and tournament size for NSGA-II, and RPsave,
Tp, Tf , df for RPB-PSWO. The computational time for
NSGA-II is considerably less for all ZDT functions, ZDT4
exempted due to the reduced archived solutions for RPB-
PSWO during convergence; thus reducing the computational
time for gBest selection and non-dominated sorting. All other
ZDT tests had a visible pareto front until convergence, where
ZDT4 converged first with a minimum f1(x) value and was
then distributed over the pareto front. The difference in HV
between the optimizers is minimal for all test, with the ex-
ception of ZDT4. Fig. 3 shows that NSGA-II reached a local
pareto front resulting in a reduced percent HV. The pareto
fronts generated for both optimizer are diverse, proving that
RPB-PSWO is capable of discovering and holding a pareto
front.

To analyze the impact of an increased number of divisions
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TABLE II
ZDT TEST FINAL HYPER VOLUME & AVERAGE COMPUTATIONAL TIME

RESULTS

Function Time (ms) HV (%)
NSGA-II RPB-PSWO NSGA-II RPB-PSWO

ZDT1 38.4 59.1 67.2 67.0
ZDT2 36.1 51.8 31.6 33.0
ZDT3 41.8 58.6 79.9 80.8
ZDT4 67.0 64.7 35.8 67.1
ZDT6 34.9 48.6 33.4 33.6

Fig. 4. Computation Time & HV comparison based on the number of
reference point (RP) used. The ZDT1 test function was executed with
various reference points for 500 iterations.

(d) in the objective space on computational time, the ZDT1
test was analyzed with d ∈ [1, 110] and a RPsave value of
10. The results (see Fig. 4) show a exponential increase in
computation time with respect to divisions. The number of
divisions per objective function increases computation time
in two ways. First, the gBest sorting method is expensive, as
each particle is compared to each archived pareto solution for
each reference point. Second, there is a positive correlation
between the number of reference points and total archived
points (RPsaveCountRP ) and thus an increase computation
time for non-dominated sorting. In contrast, Fig. 4 shows that
convergence and diversity of the pareto front is dependent on
the number reference points. Therefore, a trade off is seen
between convergence and computational time based on the
selected number of reference points.

The ZDT test set proves that RPB-PSWO is a capable
alternative to NSGA-II in a multi-objective setting, while
suffering from an increased computational time. However,
RPB-PSWO should see an increased performance in opti-
mization problems with highly dependent variables.

VI. ACTUATOR OPTIMIZATION

To explore an multi-objective optimization problem with
dependent variables, the optimization of an actuation system

a

b

X

Y

c

P1

k

(a) Series Elastic Crank Rocker De-
sign: Where link b is comprised of
a linear spring with constant k.

(b) Common polypropylene ankle
foot orthosis, comprised of a the
upright shank and horizontal foot-
bed.

Fig. 5. A series elastic crank rocker for actuating an ankle foot orthosis,
to provide dorsiflexion and plantarflexion assistance to a patient.

for an active ankle foot orthosis (AAFO) was explored. The
ankle requires a peak maximum power consumption of 3.27
W/kg of weight for a 1.1s gait [19], in which previous
works by Hollander et al. were able to reduce the required
input power by 69% by creating a crank slider mechanism,
using a connecting link with a linear spring rate [20]. The
proposed mechanical design of the actuator (see Fig. 5a)
is a crank rocker configuration in which a motor attached
to link a drives the actuator. The output torque is applied
to the ankle joint (fixed ground in bottom left of figure)
of the user by means of link c, in which a link of linear
compliance (b) connects the driven and output links. Both
the initial position of links a and c, the length of each link,
and the spring rate (linear compliance) of link b can be
altered. The proposed crank-rocker configuration increases
the dependence’s between variables, particularly the link
lengths, making the application a good testing ground for
RPB-PSWO.

The optimization objectives are to minimize power con-
sumption and total link length, while maximizing the poten-
tial rotation of the motor mounted to link a. The optimization
problem is constrained by the ability to achieve the correct
ankle output angle and torque, while remaining within the
maximum output torque of the geared DC motor and abiding
by Grashof’s criteria for crank-rocker. The convergence
results of the optimization can be seen in Fig. 6.

The optimization of the series elastic crank-rocker showed
the ability of the RPB-PSWO optimizer to converge or
surpass the minimum or maximum objective values identified
with NSGA-II (see fig. 6). The stair casing convergence, can
be linked to the selection of the control variables for RPB-
PSWO such as inertial weight, maximum velocity, turbulence
and diversity probability. Overall the crank-rocker case study
shows the ability of RPB-PSWO to converge at a faster rate
when minimizing the total link length of the system, keeping
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Fig. 6. Ankle Foot Orthosis: Crank-rocker optimization convergence, where
RPB-PSWO is able to find the best know minimum of two objectives.

the dependant relationships between the link lengths of a, b,
and c; thus proving the effectiveness of RPB-PSWO in highly
dependant multi-objective optimization problems.

VII. CONCLUSION

This paper proposes a novel reference point based multi-
objective PSO method combining the position update method
of PSO with the multi-objective capabilities of NSGA-II, to
preserve variable dependencies in multi-objective problems.
RPB-PSWO converges at a faster rate than NSGA-II in the
ZDT test cases and is capable of finding better minimums in
a real world optimization problem with dependant variables.
However, a trade-off is seen between the convergence rate
and computation time of RPB-PSWO, as a function of
the number of reference points. Therefore, when optimiz-
ing a computationally expensive objective function, many
reference points should be used, and the inverse applied
to an inexpensive function. The design of the proposed
crank-rocker AAFO actuation system has high dependencies
between the link lengths in order to minimize the size of
the system. RPB-PSWO significantly outperform NSGA-II
in this optimization metric, showing dominance in highly
dependant optimization problems.

Future work can be focused on testing RPB-PSWO in a
highly constrained decision space in the presence of various
variable dependencies. Further, the effects of the turbu-
lence and density probability can be explored thoroughly
to determine the optimal values for various optimization
applications, and methods of gBest selection can be tested
to minimize the total computational time.
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